10 research outputs found
1,2,4-Triazolo[1,5-a]quinoxaline derivatives and their simplified analogues as adenosine A3 receptor antagonists. Synthesis, structure-affinity relationships and molecular modeling studies.
The 1,2,4-triazolo[1,5-a]quinoxaline (TQX) scaffold was extensively investigated in our previously reported studies and recently, our attention was focused at position 5 of the tricyclic nucleus where different acyl and carboxylate moieties were introduced (compounds 2-15). This study produced some interesting compounds endowed with good hA(3) receptor affinity and selectivity. In addition, to find new insights about the structural requirements for hA(3) receptor-ligand interaction, the tricyclic TQX ring was destroyed yielding some 1,2,4-triazole derivatives (compounds 16-23). These simplified compounds, though maintaining the crucial structural requirements for adenosine receptor-ligand interaction, have a very low hA(3) adenosine receptor affinity, the only exception being compound 23 (1-[3-(4-methoxyphenyl)-1-phenyl-1H-1,2,4-triazol-5-yl]-3-phenylurea) endowed with a K-i value in the micro-molar range and high hA(3) selectivity versus both hA(1) and hA(2A) AR subtypes. Evaluation of the side products obtained in the herein reported synthetic pathways led to the identification of some new triazolo[1,5-a]quinoxalines as hA(3)AR antagonists (compounds 24-27). These derivatives, though lacking the classical structural requirements for the anchoring at the hA(3) receptor site, show high hA(3) affinity and in some case selectivity versus hA(1) and hA(2A) subtypes. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA(3) receptor. (C) 2014 Elsevier Ltd. All rights reserved
7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: Structural investigations at the 5-position to target human A(1) and A(2A) adenosine receptors. Molecular modeling and pharmacological studies
In previous research, several 7-amino-2-arylpyrazolo[4,3-d]pyrimidine derivatives were identified as highly potent and selective antagonists at the human A3 adenosine receptor. Structure-activity relationship studies highlighted that affinity and selectivity depended on the nature of the substituents at the 5- and 7-positions of the pyrazolo[4,3-d]pyrimidine scaffold. In particular, small lipophilic residues at the 5-position and a free amino group at position 7 afforded compounds able to bind all four human (h) adenosine receptors. Hence, to shift affinity toward the hA1 and/or hA2A subtypes, alkyl and arylalkyl chains of different length were appended at position 5 of the 2-phenylpyrazolo[4,3-d]pyrimidin-7-amine. Among the new compounds, a dual hA1/hA2A receptor antagonist was identified, namely the 5-(3-phenylpropyl) derivative 25, which shows high affinity both at human A1 (Ki = 5.31 nM) and A 2A (Ki = 55 nM) receptors. We also obtained some potent and selective antagonists for the A1 receptor, such as the 5-(3-arylpropyl)-substituted compounds 26-31, whose affinities fall in the low nanomolar range (Ki = 0.15-18 nM). Through an in silico receptor-driven approach, the obtained binding data were rationalized and the molecular bases of the hA1 and hA2A AR affinity and selectivity of derivatives 25-31 are explained. © 2014 Published by Elsevier Masson SAS
2-Arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation.
On the basis of our previously reported 2-arylpyrazolo[4,3-d]pyrimidin-7-ones, a set of 2-arylpyrazolo[4,3-d]pyrimidin-7-amines were designed as new human (h) A3 adenosine receptor (AR) antagonists. Lipophilic groups with different steric bulk were introduced at the 5-position of the bicyclic scaffold (R5 = Me, Ph, CH2Ph), and different acyl and carbamoyl moieties (R7) were appended on the 7-amino group, as well as a para-methoxy group inserted on the 2-phenyl ring. The presence of acyl groups turned out to be of paramount importance for an efficient and selective binding at the hA3 AR. In fact, most of the 7-acylamino derivatives showed low nanomolar affinity (Ki = 2.5-45 nM) and high selectivity toward this receptor. A few selected pyrazolo[4,3-d]pyrimidin-7-amides were effective in counteracting oxaliplatin-induced apoptosis in rat astrocyte cell cultures, an in vitro model of neurotoxicity. Through an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinity and hA3 versus hA2A AR selectivity were explained
Synthesis, structure-affinity relationships and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists
This paper reports the study of new 2-phenyl- and 2-methylpyrazolo[3,4-c] quinolin-4-ones (series A) and 4-amines (series B), designed as adenosine receptor (AR) antagonists. The synthesized compounds bear at the 6-position various groups, with different lipophilicity and steric hindrance, that were thought to increase human A1 and A2A AR affinities and selectivities, with respect to those of the parent 6-unsubstituted compounds. In series A, this modification was not tolerated since it reduced AR affinity, while in series B it shifted the binding towards the hA1 subtype. To rationalize the observed structure-affinity relationships, molecular docking studies at A2AAR-based homology models of the A1 and A3 ARs and at the A2AAR crystal structure were carried out
Synthesis, structure-affinity relationships, and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists.
This paper reports the study of new 2-phenyl- and 2-methylpyrazolo[3,4-c]quinolin-4-ones (series A) and 4-amines (series B), designed as adenosine receptor (AR) antagonists. The synthesized compounds bear at the 6-position various groups, with different lipophilicity and steric hindrance, that were thought to increase human A1 and A2A AR affinities and selectivities, with respect to those of the parent 6-unsubstituted compounds. In series A, this modification was not tolerated since it reduced AR affinity, while in series B it shifted the binding towards the hA1 subtype. To rationalize the observed structure–affinity relationships, molecular docking studies at A2AAR-based homology models of the A1 and A3 ARs and at the A2AAR crystal structure were carried out
Pyrazolo[1,5-c]quinazoline derivatives and their simplified analogues as adenosine receptor antagonists. Synthesis, structure-affinity relationships and molecular modeling studies
A number of 5-oxo-pyrazolo[1,5-c]quinazolines (series B-1), bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-8) but also a carboxylate group (9-14), were designed as hA3 AR antagonists. This study produced some interesting compounds endowed with good hA3 receptor affinity and high selectivity, being totally inactive at all the other AR subtypes. In contrast, the corresponding 5-ammino derivatives (series B-2) do not bind or bind with very low affinity at the hA3 AR, the only exception being the 5-N-benzoyl compound 19 that shows a hA3 Ki value in the high μ-molar range. Evaluation of the synthetic intermediates led to the identification of some 5(3)-(2-aminophenyl)-3(5)-(hetero)arylpyrazoles 20-24 with modest affinity but high selectivity toward the hA3 AR subtype. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA3 receptor
Pyrazolo[1,5-c]quinazoline derivatives and their simplified analogues as adenosine receptor antagonists; synthesis, structure-affinity relationships and molecular modeling studies.
A number of 5-oxo-pyrazolo[1,5-c]quinazolines (series B-1), bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-8) but also a carboxylate group (9-14), were designed as hA(3) AR antagonists. This study produced some interesting compounds endowed with good hA(3) receptor affinity and high selectivity, being totally inactive at all the other AR subtypes. In contrast, the corresponding 5-ammino derivatives (series B-2) do not bind or bind with very low affinity at the hA(3) AR, the only exception being the 5-N-benzoyl compound 19 that shows a hA(3)K(i) value in the high μ-molar range. Evaluation of the synthetic intermediates led to the identification of some 5(3)-(2-aminophenyl)-3(5)-(hetero)arylpyrazoles 20-24 with modest affinity but high selectivity toward the hA(3) AR subtype. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA(3) receptor
A 2a adenosine receptor: Structures, modeling, and medicinal chemistry
Many selective agonists and antagonists of the A 2A adenosine receptor (AR) have been reported, while allosteric modulators specific for this receptor are still needed. Many heterocyclic chemotypes have been discovered as A 2A AR antagonists, while most of the known AR agonists are nucleosides or 3,5-dicyanopyridine derivatives. A few A 2A AR ligands have been in clinical trials as antihypertensives, anti-inflammatory or diagnostic compounds (agonists), and as drugs for treating Parkinson’s disease and cancer (antagonists). The A 2A AR has become one of the most widely investigated G protein-coupled receptor (GPCR) structures using X-ray crystallography and also biophysical techniques such as NMR. Thus, the design of agonists, antagonists, and allosteric modulators has become structure-based, with numerous examples of in silico approaches, including virtual ligand screening (VLS), leading to the discovery of both novel agonists and antagonists