185 research outputs found

    Cracks Cleave Crystals

    Full text link
    The problem of finding what direction cracks should move is not completely solved. A commonly accepted way to predict crack directions is by computing the density of elastic potential energy stored well away from the crack tip, and finding a direction of crack motion to maximize the consumption of this energy. I provide here a specific case where this rule fails. The example is of a crack in a crystal. It fractures along a crystal plane, rather than in the direction normally predicted to release the most energy. Thus, a correct equation of motion for brittle cracks must take into account both energy flows that are described in conventional continuum theories and details of the environment near the tip that are not.Comment: 6 page

    Some exact results for the velocity of cracks propagating in non-linear elastic models

    Full text link
    We analyze a piece-wise linear elastic model for the propagation of a crack in a stripe geometry under mode III conditions, in the absence of dissipation. The model is continuous in the propagation direction and discrete in the perpendicular direction. The velocity of the crack is a function of the value of the applied strain. We find analytically the value of the propagation velocity close to the Griffith threshold, and close to the strain of uniform breakdown. Contrary to the case of perfectly harmonic behavior up to the fracture point, in the piece-wise linear elastic model the crack velocity is lower than the sound velocity, reaching this limiting value at the strain of uniform breakdown. We complement the analytical results with numerical simulations and find excellent agreement.Comment: 9 pages, 13 figure

    Supersonic crack propagation in a class of lattice models of Mode III brittle fracture

    Full text link
    We study a lattice model for mode III crack propagation in brittle materials in a stripe geometry at constant applied stretching. Stiffening of the material at large deformation produces supersonic crack propagation. For large stretching the propagation is guided by well developed soliton waves. For low stretching, the crack-tip velocity has a universal dependence on stretching that can be obtained using a simple geometrical argument.Comment: 4 pages, 3 figure

    On selection criteria for problems with moving inhomogeneities

    Get PDF
    We study mechanical problems with multiple solutions and introduce a thermodynamic framework to formulate two different selection criteria in terms of macroscopic energy productions and fluxes. Studying simple examples for lattice motion we then compare the implications for both resting and moving inhomogeneities.Comment: revised version contains new introduction, numerical simulations of Riemann problems, and a more detailed discussion of the causality principle; 18 pages, several figure

    Vortex-type elastic structured media and dynamic shielding

    Full text link
    The paper addresses a novel model of metamaterial structure. A system of spinners has been embedded into a two-dimensional periodic lattice system. The equations of motion of spinners are used to derive the expression for the chiral term in the equations describing the dynamics of the lattice. Dispersion of elastic waves is shown to possess innovative filtering and polarization properties induced by the vortextype nature of the structured media. The related homogenised effective behavior is obtained analytically and it has been implemented to build a shielding cloak around an obstacle. Analytical work is accompanied by numerical illustrations.Comment: 24 pages, 13 figure

    Discrete models of dislocations and their motion in cubic crystals

    Get PDF
    A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: sc, fcc and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and moving edge and screw dislocations and describe their cores and profiles. Dislocation loops and dipoles are also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole formed by two edge dislocations.Comment: 23 pages, 15 figures, to appear in Phys. Rev.

    Thermal Radiation From Carbon Nanotube in Terahertz Range

    Full text link
    The thermal radiation from an isolated finite-length carbon nanotube (CNT) is theoretically investigated both in near- and far-field zones. The formation of the discrete spectrum in metallic CNTs in the terahertz range is demonstrated due to the reflection of strongly slowed-down surface-plasmon modes from CNT ends. The effect does not appear in semiconductor CNTs. The concept of CNT as a thermal nanoantenna is proposed.Comment: 5 pages, 3 figure

    Feeding and dissipative waves in fracture and phase transition.

    Get PDF
    Abstract Wave conÿgurations for modes I and II of crack propagation in an elastic triangular-cell lattice are studied. [Mode III was considered in Part I of the paper: Slepyan, L.I. Feeding and dissipative waves in fracture and phase transition. I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids 4

    Arrested Cracks in Nonlinear Lattice Models of Brittle Fracture

    Full text link
    We generalize lattice models of brittle fracture to arbitrary nonlinear force laws and study the existence of arrested semi-infinite cracks. Unlike what is seen in the discontinuous case studied to date, the range in driving displacement for which these arrested cracks exist is very small. Also, our results indicate that small changes in the vicinity of the crack tip can have an extremely large effect on arrested cracks. Finally, we briefly discuss the possible relevance of our findings to recent experiments.Comment: submitted to PRE, Rapid Communication
    corecore