757 research outputs found

    Neutrino-driven wind and wind termination shock in supernova cores

    Get PDF
    The neutrino-driven wind from a nascent neutron star at the center of a supernova expands into the earlier ejecta of the explosion. Upon collision with this slower matter the wind material is decelerated in a wind termination shock. By means of hydrodynamic simulations in spherical symmetry we demonstrate that this can lead to a large increase of the wind entropy, density, and temperature, and to a strong deceleration of the wind expansion. The consequences of this phenomenon for the possible r-process nucleosynthesis in the late wind still need to be explored in detail. Two-dimensional models show that the wind-ejecta collision is highly anisotropic and could lead to a directional dependence of the nucleosynthesis even if the neutrino-driven wind itself is spherically symmetric.Comment: 6 pages, 3 figures, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 200

    Global Anisotropies in Supernova Explosions and Pulsar Recoil

    Full text link
    We show by two-dimensional and first three-dimensional simulations of neutrino-driven supernova explosions that low (l=1,2) modes can dominate the flow pattern in the convective postshock region on timescales of hundreds of milliseconds after core bounce. This can lead to large global anisotropy of the supernova explosion and pulsar kicks in excess of 500 km/s.Comment: 3 pages, 2 figures, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200

    Instability of a stalled accretion shock: evidence for the advective-acoustic cycle

    Get PDF
    We analyze the linear stability of a stalled accretion shock in a perfect gas with a parametrized cooling function L ~ rho^{beta-alpha} P^alpha. The instability is dominated by the l=1 mode if the shock radius exceeds 2-3 times the accretor radius, depending on the parameters of the cooling function. The growth rate and oscillation period are comparable to those observed in the numerical simulations of Blondin & Mezzacappa (2006). The instability mechanism is analyzed by separately measuring the efficiencies of the purely acoustic cycle and the advective-acoustic cycle. These efficiencies are estimated directly from the eigenspectrum, and also through a WKB analysis in the high frequency limit. Both methods prove that the advective-acoustic cycle is unstable, and that the purely acoustic cycle is stable. Extrapolating these results to low frequency leads us to interpret the dominant mode as an advective-acoustic instability, different from the purely acoustic interpretation of Blondin & Mezzacappa (2006). A simplified characterization of the instability is proposed, based on an advective-acoustic cycle between the shock and the radius r_nabla where the velocity gradients of the stationary flow are strongest. The importance of the coupling region in this mechanism calls for a better understanding of the conditions for an efficient advective-acoustic coupling in a decelerated, nonadiabatic flow, in order to extend these results to core-collapse supernovae.Comment: 29 pages, 18 figures, to appear in ApJ (1 new Section, 2 new Figures

    Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows: I. Spherically symmetric hydrodynamic simulations

    Get PDF
    We investigate the behavior and consequences of the reverse shock that terminates the supersonic expansion of the baryonic wind which is driven by neutrino heating off the surface of (non-magnetized) new-born neutron stars in supernova cores. To this end we perform long-time hydrodynamic simulations in spherical symmetry. In agreement with previous relativistic wind studies, we find that the neutrino-driven outflow accelerates to supersonic velocities and in case of a compact, about 1.4 solar mass (gravitational mass) neutron star with a radius of about 10 km, the wind reaches entropies of about 100 k_B per nucleon. The wind, however, is strongly influenced by the environment of the supernova core. It is decelerated and shock-heated abruptly by a termination shock that forms when the supersonic outflow collides with the slower preceding supernova ejecta. The radial position of this reverse shock varies with time and depends on the strength of the neutrino wind and the different conditions in progenitor stars with different masses and structure. Its basic properties and behavior can be understood by simple analytic considerations. We demonstrate that the entropy of matter going through the reverse shock can increase to a multiple of the asymptotic wind value. Seconds after the onset of the explosion it therefore can exceed 400 k_B per nucleon. The temperature of the shocked wind has typically dropped to about or less than 10^9 K, and density and temperature in the shock-decelerated matter continue to decrease only very slowly. Such conditions might strongly affect the important phases of supernova nucleosynthesis in a time and progenitor dependent way. (abridged

    Low relaxation rate in a low-Z alloy of iron

    Full text link
    The longest relaxation time and sharpest frequency content in ferromagnetic precession is determined by the intrinsic (Gilbert) relaxation rate \emph{GG}. For many years, pure iron (Fe) has had the lowest known value of G=57 MhzG=\textrm{57 Mhz} for all pure ferromagnetic metals or binary alloys. We show that an epitaxial iron alloy with vanadium (V) possesses values of GG which are significantly reduced, to 35±\pm5 Mhz at 27% V. The result can be understood as the role of spin-orbit coupling in generating relaxation, reduced through the atomic number ZZ.Comment: 14 pages, 4 figure

    Neutrino Mass Implications for Muon Decay Parameters

    Get PDF
    We use the scale of neutrino mass to derive model-independent naturalness constraints on possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of effective dimension four and dimension six operators that are invariant under the gauge symmetry of the Standard Model and that contribute to both muon decay and neutrino mass. We show that -- in the absence of fine tuning -- the most stringent bounds on chirality-changing operators relevant to muon decay arise from one-loop contributions to neutrino mass. The bounds we obtain on their contributions to the Michel parameters are four or more orders of magnitude stronger than bounds previously obtained in the literature. We also show that there exist chirality-changing operators that contribute to muon decay but whose flavor structure allows them to evade neutrino mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon decay experiments.Comment: 19 pages, 4 figure

    Improving the patient experience through patient portals: Insights from experienced portal users

    Get PDF
    Background: Patient portals have become part of the ecosystem of care as both patients and providers use them for a range of activities both individually and collaboratively. As patients and providers gain greater experience using portals, their use and needs related to portals may evolve. Objective: This study aimed to learn from experienced patient portal users to improve our understanding of their perspectives on portal use for collaboration and engagement as well as explore how using a portal influenced their experiences with primary care providers. Methods: Qualitative study involving 29 semi-structured interviews with family medicine patients from a large Academic Medical Center (AMC). Interviewees were patients with chronic conditions who had been identified by their providers as experienced portal users. Interview transcripts were analyzed using rigorous qualitative methods. Results: Common themes emerged around both logistical and psychological benefits of portal use. Logistical benefits included increased efficiency, improved ability to track their health information, and better documentation of communications and information during and between office visits. Psychological benefits were a greater sense of collaboration in care, increased trust in providers, and enhanced engagement in health care activities. Conclusion: Experienced portal users discussed ways in which patient portals improved both their ability to manage their care and their relationships with providers. Frequent users described a sense of collaboration with their providers and greater trust in the relationship. These findings suggest that portal use may be a mechanism through which patients can increase patient engagement and improve the patient experience

    Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core

    Full text link
    By 2D hydrodynamic simulations including a detailed equation of state and neutrino transport, we investigate the interplay between different non-radial hydrodynamic instabilities that play a role during the postbounce accretion phase of collapsing stellar cores. The convective mode of instability, which is driven by negative entropy gradients caused by neutrino heating or by time variations of the shock strength, can be identified clearly by the development of typical Rayleigh-Taylor mushrooms. However, in cases where the gas in the postshock region is rapidly advected towards the gain radius, the growth of such a buoyancy instability can be suppressed. In such a situation the shocked flow nevertheless can develop non-radial asymmetry with an oscillatory growth of the amplitude. This phenomenon has been termed ``standing accretion shock instability'' (SASI). It is shown here that the SASI oscillations can trigger convective instability and like the latter they lead to an increase of the average shock radius and of the mass in the gain layer. Both hydrodynamic instabilities in combination stretch the advection time of matter through the neutrino-heating layer and thus enhance the neutrino energy deposition in support of the neutrino-driven explosion mechanism. A rapidly contracting and more compact nascent NS turns out to be favorable for explosions, because the accretion luminosity and neutrino heating are larger and the growth rate of the SASI is higher. Moreover, we show that the oscillation period of the SASI and a variety of other features in our simulations agree with estimates for the advective-acoustic cycle (AAC), in which perturbations are carried by the accretion flow from the shock to the neutron star and pressure waves close an amplifying global feedback loop. (abridged)Comment: 23 pages, 20 figures; revised version with extended Sect.5, accepted by Astronomy & Astrophysics; high-resolution images can be obtained upon reques

    Supernova Asymmetries and Pulsar Kicks -- Views on Controversial Issues

    Full text link
    Two- and three-dimensional simulations demonstrate that hydrodynamic instabilities can lead to low-mode (l=1,2) asymmetries of the fluid flow in the neutrino-heated layer behind the supernova shock. This provides a natural explanation for aspherical mass ejection and for pulsar recoil velocities even in excess of 1000 km/s. We propose that the bimodality of the pulsar velocity distribution might be a consequence of a dominant l=1 mode in case of the fast component, while higher-mode anisotropy characterizes the postshock flow and SN ejecta during the birth of the slow neutron stars. We argue that the observed large asymmetries of supernovae and the measured high velocities of young pulsars therefore do not imply rapid rotation of the iron core of the progenitor star, nor do they require strong magnetic fields to play a crucial role in the explosion. Anisotropic neutrino emission from accretion contributes to the neutron star acceleration on a minor level, and pulsar kicks do not make a good case for non-standard neutrino physics in the nascent neutron star.Comment: 10 pages, 5 figures, full resolution figures available on request or from Preprint P-MPA1651e on MPA web page. In: The Fate of the Most Massive Stars, Proc. Eta Carinae Science Symposium (Jackson Hole, May 2004); revision discusses new Cas A observation
    • 

    corecore