2,222 research outputs found

    The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system

    Full text link
    The inner crust of a mature neutron star is composed of an elastic lattice of neutron-rich nuclei penetrated by free neutrons. These neutrons can flow relative to the crust once the star cools below the superfluid transition temperature. In order to model the dynamics of this system, which is relevant for a range of problems from pulsar glitches to magnetar seismology and continuous gravitational-wave emission from rotating deformed neutron stars, we need to understand general relativistic Lagrangian perturbation theory for elastic matter coupled to a superfluid component. This paper develops the relevant formalism to the level required for astrophysical applications.Comment: 31 pages, double spacing, minor typos fixe

    Carter's constant revealed

    Full text link
    A new formulation of Carter's constant for geodesic motion in Kerr black holes is given. It is shown that Carter's constant corresponds to the total angular momentum plus a precisely defined part which is quadratic in the linear momenta. The characterization is exact in the weak field limit obtained by letting the gravitational constant go to zero. It is suggested that the new form can be useful in current studies of the dynamics of extreme mass ratio inspiral (EMRI) systems emitting gravitational radiation.Comment: Minor changes to match published versio

    Energy and temperature fluctuations in the single electron box

    Full text link
    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed.Comment: 20 pages, 4 figures, submitted to NJP special issue on Quantum Thermodynamic

    Shot noise of photon-excited electron-hole pairs in open quantum dots

    Full text link
    We investigate shot noise of photon-excited electron-hole pairs in open multi-terminal, multi-channel chaotic dots. Coulomb interactions in the dot are treated self-consistently giving a gauge-invariant expression for the finite frequency correlations. The Coulomb interactions decrease the noise, the strong interaction limit coincides with the non-interacting adiabatic limit. Inelastic scattering and dephasing in the dot are described by voltage and dephasing probe models respectively. We find that dephasing leaves the noise invariant, but inelastic scattering decreases correlations eventually down to zero.Comment: 4 pages, 1 figure; minor changes, 3 references adde

    Elastic Stars in General Relativity: II. Radial perturbations

    Full text link
    We study radial perturbations of general relativistic stars with elastic matter sources. We find that these perturbations are governed by a second order differential equation which, along with the boundary conditions, defines a Sturm-Liouville type problem that determines the eigenfrequencies. Although some complications arise compared to the perfect fluid case, leading us to consider a generalisation of the standard form of the Sturm-Liouville equation, the main results of Sturm-Liouville theory remain unaltered. As an important consequence we conclude that the mass-radius curve for a one-parameter sequence of regular equilibrium models belonging to some particular equation of state can be used in the same well-known way as in the perfect fluid case, at least if the energy density and the tangential pressure of the background solutions are continuous. In particular we find that the fundamental mode frequency has a zero for the maximum mass stars of the models with solid crusts considered in Paper I of this series.Comment: 22 pages, no figures, final version accepted for publication in Class. Quantum Grav. The treatment of the junction conditions has been improve

    Full counting statistics for voltage and dephasing probes

    Full text link
    We present a stochastic path integral method to calculate the full counting statistics of conductors with energy conserving dephasing probes and dissipative voltage probes. The approach is explained for the experimentally important case of a Mach-Zehnder interferometer, but is easily generalized to more complicated setups. For all geometries where dephasing may be modeled by a single one-channel dephasing probe we prove that our method yields the same full counting statistics as phase averaging of the cumulant generating function.Comment: 4 pages, 2 figure
    • …
    corecore