1,421 research outputs found

    A quest for frustration driven distortion in Y2Mo2O7

    Full text link
    We investigated the nature of the freezing in the geometrically frustrated Heisenberg spin-glass Y2Mo2O7 by measuring the temperature dependence of the static internal magnetic field distribution above the spin-glass temperature, Tg, using the muSR technique. The evolution of the field distribution cannot be explained by changes in the spin susceptibility alone and suggests a lattice deformation. This possibility is addressed by numerical simulations of the Heisenberg Hamiltonian with magneto-elastic coupling at T>0.Comment: 5 pages 4 figures. Accepted for publication in PR

    Expression of a rice chitinase gene in transgenic banana (''Gros Michel'', AAA genome group) confers resistance to black leaf streak disease

    Get PDF
    Transgenic banana (Musa acuminata 'Gros Michel') integrating either of two rice chitinase genes was generated and its resistance to Black Leaf Streak disease caused by the fungus Mycosphaerella fijiensis was tested using a leaf disk bioassay. PCR screening indicated the presence of the hpt selectable marker gene in more than 90 % of the lines tested, whereas more than three quarters of the lines contained the linked rice chitinase gene resulting in a co-transformation frequency of at least 71.4 %. Further, a unique stable integration of the transgenes in each line revealed some false negative PCR results and the expected co-transformation frequency of 100 %

    Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

    Full text link
    We present seven epochs of spectropolarimetry of the Type IIb supernova (SN) 2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained 9 days after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P~0.5% through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H-alpha and HeI polarization peak after 30 days and exhibit position angles roughly aligned with the earlier continuum, while OI and CaII appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other Type IIb supernovae.Comment: Post-proof edit. Accepted to MNRAS 2015 Aug 1

    Threshold responses to morphogen gradients by zero-order ultrasensitivity

    Get PDF
    Translating a graded morphogen distribution into tight response borders is central to all developmental processes. Yet, the molecular mechanisms generating such behavior are poorly understood. During patterning of the Drosophila embryonic ventral ectoderm, a graded mitogen-activated protein kinase (MAPK) activation is converted into an all-or-none degradation switch of the Yan transcriptional repressor. Replacing the cardinal phosphorylated amino acid of Yan by a phosphomimetic residue allowed its degradation in a MAPK-independent manner, consistent with Yan phosphorylation being the critical event in generating the switch. Several alternative threshold mechanisms that could, in principle, be realized by this phosphorylation, including first order, cooperativity, positive feedback and zero-order ultrasensitivity, were analyzed. We found that they can be distinguished by their kinetics and steady-state responses to Yan overexpression. In agreement with the predictions for zero-order kinetics, an increase in Yan levels did not shift the degradation border, but significantly elevated the time required to reach steady state. We propose that a reversible loop of Yan phosphorylation implements a zero-order ultrasensitivity-like threshold mechanism, with the capacity to form sharp thresholds that are independent of the level of Yan

    Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling

    Full text link
    Decoherence is a major obstacle to any practical implementation of quantum information processing. One of the leading strategies to reduce decoherence is dynamical decoupling --- the use of an external field to average out the effect of the environment. The decoherence rate under any control field can be calculated if the spectrum of the coupling to the environment is known. We present a direct measurement of the bath coupling spectrum in an ensemble of optically trapped ultracold atoms, by applying a spectrally narrow-band control field. The measured spectrum follows a Lorentzian shape at low frequencies, but exhibits non-monotonic features at higher frequencies due to the oscillatory motion of the atoms in the trap. These features agree with our analytical models and numerical Monte-Carlo simulations of the collisional bath. From the inferred bath-coupling spectrum, we predict the performance of well-known dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these sequences in experiment and compare the results to predictions, finding good agreement in the weak-coupling limit. Thus, our work establishes experimentally the validity of the overlap integral formalism, and is an important step towards the implementation of an optimal dynamical decoupling sequence for a given measured bath spectrum.Comment: 9 pages, 6 figure

    Low temperature spin diffusion in the one-dimensional quantum O(3)O(3) nonlinear σ\sigma-model

    Full text link
    An effective, low temperature, classical model for spin transport in the one-dimensional, gapped, quantum O(3)O(3) non-linear σ\sigma-model is developed. Its correlators are obtained by a mapping to a model solved earlier by Jepsen. We obtain universal functions for the ballistic-to-diffusive crossover and the value of the spin diffusion constant, and these are claimed to be exact at low temperatures. Implications for experiments on one-dimensional insulators with a spin gap are noted.Comment: 4 pages including 3 eps-figures, Revte

    Long-time Low-latency Quantum Memory by Dynamical Decoupling

    Get PDF
    Quantum memory is a central component for quantum information processing devices, and will be required to provide high-fidelity storage of arbitrary states, long storage times and small access latencies. Despite growing interest in applying physical-layer error-suppression strategies to boost fidelities, it has not previously been possible to meet such competing demands with a single approach. Here we use an experimentally validated theoretical framework to identify periodic repetition of a high-order dynamical decoupling sequence as a systematic strategy to meet these challenges. We provide analytic bounds-validated by numerical calculations-on the characteristics of the relevant control sequences and show that a "stroboscopic saturation" of coherence, or coherence plateau, can be engineered, even in the presence of experimental imperfection. This permits high-fidelity storage for times that can be exceptionally long, meaning that our device-independent results should prove instrumental in producing practically useful quantum technologies.Comment: abstract and authors list fixe

    Free Energy of an Inhomogeneous Superconductor: a Wave Function Approach

    Full text link
    A new method for calculating the free energy of an inhomogeneous superconductor is presented. This method is based on the quasiclassical limit (or Andreev approximation) of the Bogoliubov-de Gennes (or wave function) formulation of the theory of weakly coupled superconductors. The method is applicable to any pure bulk superconductor described by a pair potential with arbitrary spatial dependence, in the presence of supercurrents and external magnetic field. We find that both the local density of states and the free energy density of an inhomogeneous superconductor can be expressed in terms of the diagonal resolvent of the corresponding Andreev Hamiltonian, resolvent which obeys the so-called Gelfand-Dikii equation. Also, the connection between the well known Eilenberger equation for the quasiclassical Green's function and the less known Gelfand-Dikii equation for the diagonal resolvent of the Andreev Hamiltonian is established. These results are used to construct a general algorithm for calculating the (gauge invariant) gradient expansion of the free energy density of an inhomogeneous superconductor at arbitrary temperatures.Comment: REVTeX, 28 page
    corecore