67,390 research outputs found

    Transition behavior of k-surface from hyperbola to ellipse

    Get PDF
    The transition behavior of the k-surface of a lossy anisotropic indefinite slab is investigated. It is found that, if the material loss is taken into account, the k-surface does not show a sudden change from hyperbola to the ellipse when one principle element of the permittivity tensor changes from negative to positive. In fact, after introducing a small material loss, the shape of the k-surface can be a combination of a hyperbola and an ellipse, and a selective high directional transmission can be obtained in such a slab

    Phase Ordering Dynamics of ϕ4\phi^4 Theory with Hamiltonian Equations of Motion

    Full text link
    Phase ordering dynamics of the (2+1)- and (3+1)-dimensional ϕ4\phi^4 theory with Hamiltonian equations of motion is investigated numerically. Dynamic scaling is confirmed. The dynamic exponent zz is different from that of the Ising model with dynamics of model A, while the exponent λ\lambda is the same.Comment: to appear in Int. J. Mod. Phys.

    Fast geometric gate operation of superconducting charge qubits in circuit QED

    Full text link
    A scheme for coupling superconducting charge qubits via a one-dimensional superconducting transmission line resonator is proposed. The qubits are working at their optimal points, where they are immune to the charge noise and possess long decoherence time. Analysis on the dynamical time evolution of the interaction is presented, which is shown to be insensitive to the initial state of the resonator field. This scheme enables fast gate operation and is readily scalable to multiqubit scenario

    Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection.

    Get PDF
    Leishmania major are intramacrophage parasites whose eradication requires the induction of T helper 1 (Th1) effector cells capable of activating macrophages to a microbicidal state. Interleukin 12 (IL-12) has been recently identified as a macrophage-derived cytokine capable of mediating Th1 effector cell development, and of markedly enhancing interferon gamma (IFN-gamma) production by T cells and natural killer cells. Infection of macrophages in vitro by promastigotes of L. major caused no induction of IL-12 p40 transcripts, whereas stimulation using heat-killed Listeria or bacterial lipopolysaccharide induced readily detectable IL-12 mRNA. Using a competitor construct to quantitate a number of transcripts, a kinetic analysis of cytokine induction during the first few days of infection by L. major was performed. All strains of mice examined, including susceptible BALB/c and resistant C57BL/6, B10.D2, and C3H/HeN, had the appearance of a CD4+ population in the draining lymph nodes that contained transcripts for IL-2, IL-4, and IFN-gamma (and in some cases, IL-10) that peaked 4 d after infection. In resistant mice, the transcripts for IL-2, IL-4, and IL-10 were subsequently downregulated, whereas in susceptible BALB/c mice, these transcripts were only slightly decreased, and IL-4 continued to be reexpressed at high levels. IL-12 transcripts were first detected in vivo by 7 d after infection, consistent with induction by intracellular amastigotes. Challenge of macrophages in vitro confirmed that amastigotes, in contrast to promastigotes, induced IL-12 p40 mRNA. Reexamination of the cytokine mRNA at 4 d revealed expression of IL-13 in all strains analyzed, suggesting that IL-2 and IL-13 may mediate the IL-12-independent production of IFN-gamma during the first days after infection. Leishmania have evolved to avoid inducing IL-12 from host macrophages during transmission from the insect vector, and cause a striking induction of mRNAs for IL-2, IL-4, IL-10, and IL-13 in CD4+ T cells. Each of these activities may favor survival of the organism

    Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study

    Get PDF
    In order to gain insights into the origin of colossal magneto-resistance (CMR) in manganese oxides, we performed a ^{139}La NMR study in the double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie temperature T_C=126 K, applying a magnetic field induces a long-range ferromagnetic order that persists up to T=330 K. The critical field at which the induced magnetic moment is saturated coincides with the field at which the CMR effect reaches to a maximum. Our results therefore indicate that the CMR observed above T_C in this compound is due to the field-induced ferromagnetism that produces a metallic state via the double exchange interaction

    Vanishing Gamow-Teller Transition Rate for A=14 and the Nucleon-Nucleon Interaction in the Medium

    Get PDF
    The problem of the near vanishing of the Gamow-Teller transition (GTGT) in the A=14 system between the lowest J=0+ T=1J=0^+~ T=1 and J=1+ T=0J=1^+~ T=0 states is revisited. The model space is extended from the valence space (p2)(p^{-2}) to the valence space plus all 2ω\hbar \omega excitations. The question is addressed as to what features of the effective nucleon-nucleon interaction in the medium are required to obtain the vanishing GTGT strength in this extended space. It turns out that a combination of a realistic strength of the tensor force combined with a spin-orbit interaction which is enhanced as compared to the free interaction yields a vanishing GTGT strength. Such an interaction can be derived from a microscopic meson exchange potential if the enhancement of the small component of the Dirac spinors for the nucleons is taken into account.Comment: RevTex file, 7 pages, four postscript figures. submitted to Phys. Rev. C as a brief repor
    corecore