25,238 research outputs found

    Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Full text link
    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin. This constitutes a reduction of the number of conditions needed to observe self-similarity in graphene-based structures, see D\'iaz-Guerrero et al. [D. S. D\'iaz-Guerrero, L. M. Gaggero-Sager, I. Rodr\'iguez-Vargas, and G. G. Naumis, arXiv:1503.03412v1, 2015]

    Generation of twin Fock states via transition from a two-component Mott insulator to a superfluid

    Get PDF
    We propose the dynamical creation of twin Fock states, which exhibit Heisenberg limited interferometric phase sensitivities, in an optical lattice. In our scheme a two-component Mott insulator with two bosonic atoms per lattice site is melted into a superfluid. This process transforms local correlations between hyperfine states of atom pairs into multi-particle correlations extending over the whole system. The melting time does not scale with the system size which makes our scheme experimentally feasible.Comment: 4 pages, 4 figure

    London force and energy transportation between interfacial surfaces

    Get PDF
    With appropriately selected optical frequencies, pulses of radiation propagating through a system of chemically distinct and organized components can produce areas of spatially selective excitation. This paper focuses on a system in which there are two absorptive components, each one represented by surface adsorbates arrayed on a pair of juxtaposed interfaces. The adsorbates are chosen to be chemically distinct from the material of the underlying surface. On promotion of any adsorbate molecule to an electronic excited state, its local electronic environment is duly modified, and its London interaction with nearest neighbor molecules becomes accommodated to the new potential energy landscape. If the absorbed energy then transfers to a neighboring adsorbate of another species, so that the latter acquires the excitation, the local electronic environment changes and compensating motion can be expected to occur. Physically, this is achieved through a mechanism of photon absorption and emission by molecular pairs, and by the engagement of resonance transfer of energy between them. This paper presents a detailed analysis of the possibility of optically effecting such modifications to the London force between neutral adsorbates, based on quantum electrodynamics (QED). Thus, a precise link is established between the transfer of excitation and ensuing mechanical effects

    Circumbinary Molecular Rings Around Young Stars in Orion

    Full text link
    We present high angular resolution 1.3 mm continuum, methyl cyanide molecular line, and 7 mm continuum observations made with the Submillimeter Array and the Very Large Array, toward the most highly obscured and southern part of the massive star forming region OMC1S located behind the Orion Nebula. We find two flattened and rotating molecular structures with sizes of a few hundred astronomical units suggestive of circumbinary molecular rings produced by the presence of two stars with very compact circumstellar disks with sizes and separations of about 50 AU, associated with the young stellar objects 139-409 and 134-411. Furthermore, these two circumbinary rotating rings are related to two compact and bright {\it hot molecular cores}. The dynamic mass of the binary systems obtained from our data are ≥\geq 4 M⊙_\odot for 139-409 and ≥\geq 0.5 M⊙_\odot for 134-411. This result supports the idea that intermediate-mass stars will form through {\it circumstellar disks} and jets/outflows, as the low mass stars do. Furthermore, when intermediate-mass stars are in multiple systems they seem to form a circumbinary ring similar to those seen in young, multiple low-mass systems (e.g., GG Tau and UY Aur).Comment: Accepted by Astronomy and Astrophysic

    The two Ultraluminous X-ray sources in the galaxy NGC 925

    Get PDF
    NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resembles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ((2(2−-4)×10404)\times10^{40} erg s−1^{-1}) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc' ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.Comment: Accepted on MNRAS with very minor comments, 7 pages, 5 figures, 1 tabl

    The Atmospheric Monitoring System of the JEM-EUSO Space Mission

    Full text link
    An Atmospheric Monitoring System (AMS) is a mandatory and key device of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR) and Extremely-High Energy Cosmic Rays (EHECR) from Space. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. Our AMS consists of a very challenging space infrared camera and a LIDAR device, that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. The AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS ( Extensive Air Shower) are measured with an accuracy better than 30\% primary energy and 120 g/cm2g/cm^2 depth of maximum development for EAS occurring either in clear sky or with the EAS depth of maximum development above optically thick cloud layers. Moreover a very novel radiometric retrieval technique considering the LIDAR shots as calibration points, that seems to be the most promising retrieval algorithm is under development to infer the Cloud Top Height (CTH) of all kind of clouds, thick and thin clouds in the FoV of the JEM-EUSO space telescope
    • …
    corecore