3,737 research outputs found

    Numbers of donors and acceptors from transport measurements in graphene

    Full text link
    A method is suggested to separately determine the surface density of positively and negatively charged impurities that limit the mobility in a graphene monolayer. The method is based on the exact result for the transport cross-section, according to which the massless carriers are scattered more strongly when they are attracted to a charged impurity than when they are repelled from it.Comment: 3 pages, 1 figur

    Hydrodynamic Flow as Congruence of Geodesic Lines in Riemannian Space-Time

    Get PDF
    It is shown that small elements of perfect fluid in adiabatic processes move along geodesic lines of a Riemannian space-time.Comment: 5 pages, Latex. Final versio

    The electrification of spacecraft

    Get PDF
    Physical and applied aspects of the electrification of space vehicles and natural celestial objects are discussed, the factors resulting in electrification of spacecraft are analyzed, and methods of investigating various phenomena associated with this electrification and ways of protecting spacecraft against the influence of static electricity are described. The booklet is intended for the general reader interested in present day questions of space technology

    Groebner-Shirshov basis for HNN extensions of groups and for the alternating group

    Full text link
    In this paper, we generalize the Shirshov's Composition Lemma by replacing the monomial order for others. By using Groebner-Shirshov bases, the normal forms of HNN extension of a group and the alternating group are obtained

    Qualitative Criterion for Interception in a Pursuit/Evasion Game

    Full text link
    A qualitative account is given of a differential pursuit/evasion game. A criterion for the existence of an intercept solution is obtained using future cones that contain all attainable trajectories of target or interceptor originating from an initial position. A sufficient and necessary conditon that an opportunity to intercept always exist is that, after some initial time, the future cone of the target be contained within the future cone of the interceptor. The sufficient condition may be regarded as a kind of Nash equillibrium.Comment: 8 pages; revsions and corrigend

    Temperature-dependent Drude transport in a two-dimensional electron gas

    Full text link
    We consider transport of dilute two-dimensional electrons, with temperature between Fermi and Debye temperatures. In this regime, electrons form a nondegenerate plasma with mobility limited by potential disorder. Different kinds of impurities contribute unique signatures to the resulting temperature-dependent Drude conductivity, via energy-dependent scattering. This opens up a way to characterize sample disorder composition. In particular, neutral impurities cause a slow decrease in conductivity with temperature, whereas charged impurities result in conductivity growing as a square root of temperature. This observation serves as a precaution for literally interpreting metallic or insulating conductivity dependence, as both can be found in a classical metallic system.Comment: 5 pages, 2 figures, published versio

    Devil's staircase of incompressible electron states in a nanotube

    Full text link
    It is shown that a periodic potential applied to a nanotube can lock electrons into incompressible states. Depending on whether electrons are weakly or tightly bound to the potential, excitation gaps open up either due to the Bragg diffraction enhanced by the Tomonaga - Luttinger correlations, or via pinning of the Wigner crystal. Incompressible states can be detected in a Thouless pump setup, in which a slowly moving periodic potential induces quantized current, with a possibility to pump on average a fraction of an electron per cycle as a result of interactions.Comment: 4 pages, 1 figure, published versio

    Dirac fermion wave guide networks on topological insulator surfaces

    Full text link
    Magnetic texturing on the surface of a topological insulator allows the design of wave guide networks and beam splitters for domain-wall Dirac fermions. Guided by simple analytic arguments we model a Dirac fermion interferometer consisting of two parallel pathways, whereby a newly developed staggered-grid leap-frog discretization scheme in 2+1 dimensions with absorbing boundary conditions is employed. The net transmission can be tuned between constructive to destructive interference, either by variation of the magnetization (path length) or an applied bias (wave length). Based on this principle, a Dirac fermion transistor is proposed. Extensions to more general networks are discussed.Comment: Submitted to PR
    corecore