56 research outputs found

    Nonequilibrium evolution thermodynamics

    Full text link
    A new approach - nonequilibrium evolution thermodynamics, is compared with classical variant of Landau approachComment: 4 pages, 1 figur

    Thermodynamics and kinetics of solids fragmentation at severe plastic deformation

    Full text link
    The approach of nonequilibrium evolution thermodynamics earlier offered is developed. It helps to describe the processes of defect formation within the adiabatic approximation. The basic equations system depends on the initial defects distribution (dislocations and grain boundaries). The phase diagram is determined with the domains of the realization of different limiting structure types. The interaction effect of several defect types on the formation of a limiting structure is investigated in terms of the internal energy. The conditions of the formation of two limiting structures are found. The kinetics of the steady-state values establishment of the defects density is investigated within the scope of the adiabatic approximation. The dislocations density change follows the evolution of the grain boundaries density in this approach. It is shown that grain sizes, in limiting structures, decrease with an increase of the elastic strains.Comment: 14 pages, 6 figure

    Realistic interatomic potential for MD simulations

    Get PDF
    The coefficients of interatomic potential of simple form Exp-6 for neon are obtained. Repulsive part is calculated ab-initio in the Hartree-Fock approximation using the basis of atomic orbitals orthogonalized exactly on different lattice sites. Attractive part is determined empirically using single fitting parameter. The potential obtained describes well the equation of state and elastic moduli of neon crystal in wide range of interatomic distances and it is appropriate for molecular dynamic simulations of high temperature properties and phenomena in crystals and liquids.Comment: MikTex v.2.1 (AMS-TEX),11 pages, 3 EPS figure

    Formation of the internal structure of solids under severe action

    Full text link
    On the example of a particular problem, the theory of vacancies, a new form of kinetic equations symmetrically incorporation the internal and free energies has been derived. The dynamical nature of irreversible phenomena at formation and motion of defects (dislocations) has been analyzed by a computer experiment. The obtained particular results are extended into a thermodynamic identity involving the law of conservation of energy at interaction with an environment (the 1st law of thermodynamics) and the law of energy transformation into internal degree of freedom (relaxation). The identity is compared with the analogous Jarzynski identity. The approach is illustrated by simulation of processes during severe plastic deformation, the Rybin kinetic equation for this case has been derived.Comment: 9 pages, 5 figure

    Superparamagnetic magnetization equation in two dimensions

    Get PDF
    An equation for the dependence of magnetization on magnetic field in the case of two-dimensional (base plane) anisotropy has been derived. The resulting equation is expressed as an infinite series of modified Bessel functions, unlike the elementary function expressions that are applicable to the one-dimensional (axially anisotropic) and three-dimensional (isotropic) cases. Nevertheless, in the low-field limit, the series can be effectively truncated to give an approximate solution, while, in the high-field limit, an alternative expression has been derived which represents the limiting function as the field strength tends to infinity. The resulting expressions can be used to describe the superparamagnetic magnetization and susceptibility as a function of magnetic field in situations where the magnetic moments are constrained to lie in a plane, with no preferred direction within the plane. This can therefore be applied to two-dimensional structures, such as magnetic thin films, where magnetostatic energy confines the moments to the plane of the film, or to three-dimensional structures with planar magnetocrystalline anisotropy
    corecore