27,792 research outputs found

    Design, fabrication, test, and delivery of a high-pressure oxygen/RP-1 injector

    Get PDF
    A summary of the design analyses for a liquid rocket injector using oxygen and RP-1 propellants at high chamber pressures of 20,682 kPa (3000 psia) is presented. This analytical investigation includes combustion efficiency versus injector element type, combustion stability, and combustor cooling requirements. The design and fabrication of a subscale injector/acoustic resonantor assembly capable of providing a nominal thrust of 222K N (50,000 lbF) is presented

    Graphical description of local Gaussian operations for continuous-variable weighted graph states

    Full text link
    The form of a local Clifford (LC, also called local Gaussian (LG)) operation for the continuous-variable (CV) weighted graph states is presented in this paper, which is the counterpart of the LC operation of local complementation for qubit graph states. The novel property of the CV weighted graph states is shown, which can be expressed by the stabilizer formalism. It is distinctively different from the qubit weighted graph states, which can not be expressed by the stabilizer formalism. The corresponding graph rule, stated in purely graph theoretical terms, is described, which completely characterizes the evolution of CV weighted graph states under this LC operation. This LC operation may be applied repeatedly on a CV weighted graph state, which can generate the infinite LC equivalent graph states of this graph state. This work is an important step to characterize the LC equivalence class of CV weighted graph states.Comment: 5 pages, 6 figure

    Temperature dependence of the nonlocal voltage in an Fe/GaAs electrical spin injection device

    Full text link
    The nonlocal spin resistance is measured as a function of temperature in a Fe/GaAs spin-injection device. For nonannealed samples that show minority-spin injection, the spin resistance is observed up to room temperature and decays exponentially with temperature at a rate of 0.018\,K1^{-1}. Post-growth annealing at 440\,K increases the spin signal at low temperatures, but the decay rate also increases to 0.030\,K1^{-1}. From measurements of the diffusion constant and the spin lifetime in the GaAs channel, we conclude that sample annealing modifies the temperature dependence of the spin transfer efficiency at injection and detection contacts. Surprisingly, the spin transfer efficiency increases in samples that exhibit minority-spin injection.Comment: 10 pages, 4 figure

    Directed abelian algebras and their applications to stochastic models

    Full text link
    To each directed acyclic graph (this includes some D-dimensional lattices) one can associate some abelian algebras that we call directed abelian algebras (DAA). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground state wavefunctions (stationary states probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and choose Hamiltonians linear in the generators, in the finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=Dz = D. One possible application of the DAA is to sandpile models. In the paper we present this application considering one and two dimensional lattices. In the one dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent στ=3/2\sigma_{\tau} = 3/2). We study the local densityof particles inside large avalanches showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found στ=1.782±0.005\sigma_{\tau} = 1.782 \pm 0.005.Comment: 14 pages, 9 figure

    Pathway from condensation via fragmentation to fermionization of cold bosonic systems

    Full text link
    For small scattering lengths, cold bosonic atoms form a condensate the density profile of which is smooth. With increasing scattering length, the density {\it gradually} acquires more and more oscillations. Finally, the number of oscillations equals the number of bosons and the system becomes {\it fermionized}. On this pathway from condensation to fermionization intriguing phenomena occur, depending on the shape of the trap. These include macroscopic fragmentation and {\it coexistence} of condensed and fermionized parts that are separated in space.Comment: 12 pages, 2 figure

    Quark-Antiquark Bound States in the Relativistic Spectator Formalism

    Get PDF
    The quark-antiquark bound states are discussed using the relativistic spectator (Gross) equations. A relativistic covariant framework for analyzing confined bound states is developed. The relativistic linear potential developed in an earlier work is proven to give vanishing meson\to q+qˉq+\bar{q} decay amplitudes, as required by confinement. The regularization of the singularities in the linear potential that are associated with nonzero energy transfers (i.e. q2=0,qμ0q^2=0,q^{\mu}\neq0) is improved. Quark mass functions that build chiral symmetry into the theory and explain the connection between the current quark and constituent quark masses are introduced. The formalism is applied to the description of pions and kaons with reasonable results.Comment: 31 pages, 16 figure

    An Exact Prediction of N=4 SUSYM Theory for String Theory

    Get PDF
    We propose that the expectation value of a circular BPS-Wilson loop in N=4 SUSYM can be calculated exactly, to all orders in a 1/N expansion and to all orders in g^2 N. Using the AdS/CFT duality, this result yields a prediction of the value of the string amplitude with a circular boundary to all orders in alpha' and to all orders in g_s. We then compare this result with string theory. We find that the gauge theory calculation, for large g^2 N and to all orders in the 1/N^2 expansion does agree with the leading string theory calculation, to all orders in g_s and to lowest order in alpha'. We also find a relation between the expectation value of any closed smooth Wilson loop and the loop related to it by an inversion that takes a point along the loop to infinity, and compare this result, again successfully, with string theory.Comment: LaTeX, 22 pages, 3 figures. Argument corrected and two new sections adde

    Large two-level magnetoresistance effect in doped manganite grain boundary junctions

    Full text link
    We performed a systematic analysis of the tunneling magnetoresistance (TMR) effect in single grain boundary junctions formed in epitaxial La(2/3)Ca(1/3)MnO(3) films deposited on SrTiO(3) bicrystals. For magnetic fields H applied parallel to the grain boundary barrier, an ideal two-level resistance switching behavior with sharp transitions is observed with a TMR effect of up to 300% at 4.2 K and still above 100% at 77 K. Varying the angle between H and the grain boundary results in differently shaped resistance vs H curves. The observed behavior is explained within a model of magnetic domain pinning at the grain boundary interface.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (Rapid Comm.

    Acoustically driven ferromagnetic resonance

    Full text link
    Surface acoustic waves (SAW) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic/ferroelectric (nickel/lithium niobate) hybrid device. We measure the SAW magneto-transmission at room temperature as a function of frequency, external magnetic field magnitude, and orientation. Our data are well described by a modified Landau-Lifshitz-Gilbert approach, in which a virtual, strain-induced tickle field drives the magnetization precession. This causes a distinct magnetic field orientation dependence of elastically driven FMR that we observe in both model and experiment.Comment: 4 page

    Relativistic calculation of the triton binding energy and its implications

    Get PDF
    First results for the triton binding energy obtained from the relativistic spectator or Gross equation are reported. The Dirac structure of the nucleons is taken into account. Numerical results are presented for a family of realistic OBE models with off-shell scalar couplings. It is shown that these off-shell couplings improve both the fits to the two-body data and the predictions for the binding energy.Comment: 5 pages, RevTeX 3.0, 1 figure (uses epsfig.sty
    corecore