7,994 research outputs found

    Summary of photovoltaic system performance models

    Get PDF
    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives

    Steady state entanglement of two superconducting qubits engineered by dissipation

    Full text link
    We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.Comment: 12 pages, 5 figures; close to published versio

    Forming a Global Citizen: Personal Development Through Study Abroad

    Get PDF
    This literature review examines key benefits of studying abroad, while investigating which elements most contribute to students’ overall success. Current literature suggests that benefits of studying abroad include, but are not limited to, second language acquisition (SLA), identity formation, and intercultural competence. The degree of which each is improved depends on a multitude of variables. SLA improvement is explored via consideration of students’ baseline proficiency level, degree of receptivity of the host country, and length of the study abroad program. Students’ identity formation is explained through the three bases of identity: person, role, and group/social. Finally, intercultural competence in study abroad is explored, in addition to characteristics that contribute to its growth. This thesis attempts to compile advice for students on a successful study abroad, in addition to the promotion of global citizenship

    Re: Draft EIR for the Santa Ana River Water Right Applications for Supplemental Water Supply Dear Mr. Reiter:

    Get PDF
    protecting and restoring natural ecosystems and imperiled species throug

    A probabilistic analysis of silicon cost

    Get PDF
    Silicon materials costs represent both a cost driver and an area where improvement can be made in the manufacture of photovoltaic modules. The cost from three processes for the production of low-cost silicon being developed under the U.S. Department of Energy's (DOE) National Photovoltaic Program is analyzed. The approach is based on probabilistic inputs and makes use of two models developed at the Jet Propulsion Laboratory: SIMRAND (SIMulation of Research ANd Development) and IPEG (Improved Price Estimating Guidelines). The approach, assumptions, and limitations are detailed along with a verification of the cost analyses methodology. Results, presented in the form of cumulative probability distributions for silicon cost, indicate that there is a 55% chance of reaching the DOE target of $16/kg for silicon material. This is a technically achievable cost based on expert forecasts of the results of ongoing research and development and do not imply any market prices for a given year
    • …
    corecore