1,319 research outputs found

    Experimental Impacts into Strength-Layered Targets: Ejecta Kinematics

    Get PDF
    AImpact cratering has dominated the evolution and modification of planetary surfaces through-out the history of the solar system. Impact craters can serve as probes to understanding the details of a planetary subsurface; for example, Oberbeck and Quaide, suggested that crater morphology can be used to estimate the thickness of a regolith layer on top of a more competent unit. Lunar craters show a morphological progression from a simple bowl shape to flat-floored and concentric craters as crater diameter in-creases for a given regolith thickness. The final shape of the impact crater is a result of the subsurface flow-field initiated as the projectile transfers its energy and momentum to the target surface at the moment of impact. Therefore, when a regolith layer is present over a stronger substrate, such as is the case on the lunar surface, the substrate modifies the flow-field and thereby the excavation flow of the crater, which is reflected in the morphology of the final crater. Here we report on a series of experimental impacts into targets composed of a thin layer of loose sand on top of a stronger substrate. We use the Ejection-Velocity Measurement System developed to examine the ejecta kinematics during the formation of these craters

    Experimental Impacts into Strength-Layered Targets: Crater Morphology and Morphometry

    Get PDF
    Impact cratering is a fundamental physical process that has dominated the evolution and modification of nearly every planetary surface in the Solar System. Impact craters serve as a means to probe the subsurface structure of a planetary body and provide hints about target surface properties. By examining small craters on the lunar maria and comparing these to experimental impacts in the laboratory, Oberbeck and Quaide first suggested that crater morphology can be used to estimate the thickness of a regolith layer on top of a more competent unit. Lunar craters show a morphological progression from a simple bowl shape to flat-floored and concentric craters as crater diameter increases for a given regolith thickness. This quantitative relationship is commonly used to estimate regolith thicknesses on the lunar surface and has also been explored via numerical and experimental studies. Here we report on a series of experimental impact craters formed in targets com-posed of a thin layer of loose sand on top of a stronger substrate at the Experimental Impact Laboratory at NASA Johnson Space Center

    Hawks and Doves on Small-World Networks

    Get PDF
    We explore the Hawk-Dove game on networks with topologies ranging from regular lattices to random graphs with small-world networks in between. This is done by means of computer simulations using several update rules for the population evolutionary dynamics. We find the overall result that cooperation is sometimes inhibited and sometimes enhanced in those network structures, with respect to the mixing population case. The differences are due to different update rules and depend on the gain-to-cost ratio. We analyse and qualitatively explain this behavior by using local topological arguments.Comment: 12 pages, 8 figure

    Morphology and taxonomy of the genus Ramazzottius (Eutardigrada; Ramazzottiidae) with the integrative description of Ramazzottius kretschmanni sp. nov

    Get PDF
    The species of the genus Ramazzottius (Ramazzottiidae, Eutardigrada) are among the most common and widespread tardigrade species in the world. Most of the 28 Ramazzottius species have been described only with morphological characters which were most of the time represented only with drawings. The discovery of a new species of this genus in the Black Forest (Germany) provided the opportunity to compare this species with the type specimens of ten Ramazzottius species, to propose the status of species dubia for Ramazzottius edmondabouti, and through new photographs to elucidate the anatomy of animals and eggs (in particular of the head sensory regions, eye spots, buccal tube, ornamentations of the dorsal posterior cuticle, and morphology of egg processes). These thorough observations led to a better understanding of the diversity and evolution, not only of this cosmopolitan genus, but also of other eutardigrade genera. The new species Ramazzottius kretschmanni is described with an integrative approach integrating morphological (light and electron microscopy observations and morphometric data) and molecular (cox1 and ITS2 genes) data. The PTP and ASAP analyses confirmed the validity of the new species from a molecular point of view. The new species is morphologically similar to Ramazzottius oberhaeuseri, but is distinguishable by the smooth cuticle, the presence of a “cheek-like” area on the head, and the size of egg processes as well as different sequences of the molecular markers

    Strong electric fields induced on a sharp stellar boundary

    Full text link
    Due to a first order phase transition, a compact star may have a discontinuous distribution of baryon as well as electric charge densities, as e.g. at the surface of a strange quark star. The induced separation of positive and negative charges may lead to generation of supercritical electric fields in the vicinity of such a discontinuity. We study this effect within a relativistic Thomas-Fermi approximation and demonstrate that the strength of the electric field depends strongly on the degree of sharpness of the surface. The influence of strong electric fields on the stability of compact stars is discussed. It is demonstrated that stable configurations appear only when the counter-pressure of degenerate fermions is taken into consideration.Comment: 13 pages, 2 figure

    World-Wide Web scaling exponent from Simon's 1955 model

    Full text link
    Recently, statistical properties of the World-Wide Web have attracted considerable attention when self-similar regimes have been observed in the scaling of its link structure. Here we recall a classical model for general scaling phenomena and argue that it offers an explanation for the World-Wide Web's scaling exponent when combined with a recent measurement of internet growth.Comment: 1 page RevTeX, no figure

    Pore-forming peptide of pathogenic Entamoeba histolytica.

    Full text link

    A positively selected mutation in the WNV 2K peptide confers resistance to superinfection exclusion in vivo

    Get PDF
    AbstractMolecular epidemiologic studies of North American (NA) West Nile virus (WNV; Flaviviridae, Flavivirus) have documented the displacement of the introduced NY99 genotype with WN02. In addition, these studies have shown that particular substitutions are under positive selection. One occurs in the C-terminus of the NS4A coding sequence and results in a valine to methionine substitution at position nine of the 2K peptide. 2K-V9M confers the ability to overcome superinfection exclusion in vitro. We hypothesized that WNV strains bearing 2K-V9M have higher fitness than wildtype in Culex quinquefasciatus mosquitoes. Although infection rates and viral titers were not significantly different, virus dissemination rates were significantly higher with WNV 2K-V9M. As a super-infecting virus, WNV 2K-V9M was more successful than wildtype, however, in a mixed infection, 2K-V9M was not. These data support observations that 2K-V9M confers a context-specific selective advantage in mosquitoes and provides an in vivo mechanism for its positive selection

    Potts Model On Random Trees

    Full text link
    We study the Potts model on locally tree-like random graphs of arbitrary degree distribution. Using a population dynamics algorithm we numerically solve the problem exactly. We confirm our results with simulations. Comparisons with a previous approach are made, showing where its assumption of uniform local fields breaks down for networks with nodes of low degree.Comment: 10 pages, 3 figure
    corecore