3,525 research outputs found

    Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation

    Get PDF
    The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing

    Associations between diurnal preference, sleep quality and externalizing behaviours: a behavioural genetic analysis

    Get PDF
    Background - Certain aspects of sleep co-occur with externalizing behaviours in youth, yet little is known about these associations in adults. The present study: (1) examines the associations between diurnal preference (morningness versus eveningness), sleep quality and externalizing behaviours; (2) explores the extent to which genetic and environmental influences are shared between or are unique to these phenotypes; (3) examines the extent to which genetic and environmental influences account for these associations. Method - Questionnaires assessing diurnal preference, sleep quality and externalizing behaviours were completed by 1556 young adult twins and siblings. Results - A preference for eveningness and poor sleep quality were associated with greater externalizing symptoms [r=0.28 (95% CI 0.23–0.33) and 0.34 (95% CI 0.28–0.39), respectively]. A total of 18% of the genetic influences on externalizing behaviours were shared with diurnal preference and sleep quality and an additional 14% were shared with sleep quality alone. Non-shared environmental influences common to the phenotypes were small (2%). The association between diurnal preference and externalizing behaviours was mostly explained by genetic influences [additive genetic influence (A)=80% (95% CI 0.56–1.01)], as was the association between sleep quality and externalizing behaviours [A=81% (95% CI 0.62–0.99)]. Non-shared environmental (E) influences accounted for the remaining variance for both associations [E=20% (95% CI −0.01 to 0.44) and 19% (95% CI 0.01–0.38), respectively]. Conclusions - A preference for eveningness and poor sleep quality are moderately associated with externalizing behaviours in young adults. There is a moderate amount of shared genetic influences between the phenotypes and genetic influences account for a large proportion of the association between sleep and externalizing behaviours. Further research could focus on identifying specific genetic polymorphisms common to both sleep and externalizing behaviours

    New Shape Invariant Potentials in Supersymmetric Quantum Mechanics

    Get PDF
    Quantum mechanical potentials satisfying the property of shape invariance are well known to be algebraically solvable. Using a scaling ansatz for the change of parameters, we obtain a large class of new shape invariant potentials which are reflectionless and possess an infinite number of bound states. They can be viewed as q-deformations of the single soliton solution corresponding to the Rosen-Morse potential. Explicit expressions for energy eigenvalues, eigenfunctions and transmission coefficients are given. Included in our potentials as a special case is the self-similar potential recently discussed by Shabat and Spiridonov.Comment: 8pages, Te

    Mapping of shape invariant potentials by the point canonical transformation

    Full text link
    In this paper by using the method of point canonical transformation we find that the Coulomb and Kratzer potentials can be mapped to the Morse potential. Then we show that the P\"{o}schl-Teller potential type I belongs to the same subclass of shape invariant potentials as Hulth\'{e}n potential. Also we show that the shape-invariant algebra for Coulomb, Kratzer, and Morse potentials is SU(1,1), while the shape-invariant algebra for P\"{o}schl-Teller type I and Hulth\'{e}n is SU(2)

    Feasibility of detecting single atoms using photonic bandgap cavities

    Get PDF
    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped atoms into the mode of the PBG cavity.Comment: 11 pages, 5 figure

    Bound-States of the Spinless Salpeter Equation for the PT-Symmetric Generalized Hulthen Potential by the Nikiforov-Uvarov Method

    Get PDF
    The one-dimensional spinless Salpeter equation has been solved for the PT-symmetric generalized Hulth\'{e}n potential. The Nikiforov-Uvarov {NU) method which is based on solving the second-order linear differential equations by reduction to a generalized equation of hypergeometric type is used to obtain exact energy eigenvalues and corresponding eigenfunctions. We have investigated the positive and negative exact bound states of the s-states for different types of complex generalized Hulthen potentials.Comment: 24 page

    Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity

    Full text link
    We demonstrate coupling of the zero-phonon line of individual nitrogen-vacancy centers and the modes of microring resonators fabricated in single-crystal diamond. A zero-phonon line enhancement exceeding ten-fold is estimated from lifetime measurements at cryogenic temperatures. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.Comment: 5 pages, 4 figure

    Surprising Connections Between General Relativity and Condensed Matter

    Full text link
    This brief review is intended to introduce gravitational physicists to recent developments in which general relativity is being used to describe certain aspects of condensed matter systems, e.g., superconductivity.Comment: 14 pages; based on talk given at GR1

    Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

    Full text link
    With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.Comment: 43 pages, 21 figures, Submitted for publication in PASP. Also see companion paper "Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves" by Martin C. Stumpe, et a
    corecore