151 research outputs found

    A Method to Extract Potentials from the Temperature Dependence of Langmuir Constants for Clathrate-Hydrates

    Full text link
    It is shown that the temperature dependence of Langmuir constants contains all the information needed to determine spherically averaged intermolecular potentials. An analytical ``inversion'' method based on the standard statistical model of van der Waals and Platteeuw is presented which extracts cell potentials directly from experimental data. The method is applied to ethane and cyclopropane clathrate-hydrates, and the resulting potentials are much simpler and more meaningful than those obtained by the usual method of numerical fitting with Kihara potentials.Comment: 33 pages, 7 figures, to appear in Physica

    Subtraction of Bright Point Sources from Synthesis Images of the Epoch of Reionization

    Full text link
    Bright point sources associated with extragalactic AGN and radio galaxies are an important foreground for low frequency radio experiments aimed at detecting the redshifted 21cm emission from neutral hydrogen during the epoch of reionization. The frequency dependence of the synthesized beam implies that the sidelobes of these sources will move across the field of view as a function of observing frequency, hence frustrating line-of-sight foreground subtraction techniques. We describe a method for subtracting these point sources from dirty maps produced by an instrument such as the MWA. This technique combines matched filters with an iterative centroiding scheme to locate and characterize point sources in the presence of a diffuse background. Simulations show that this technique can improve the dynamic range of EOR maps by 2-3 orders of magnitude.Comment: 11 pages, 8 figures, 1 table, submitted to PAS

    PMN J1632-0033: A new gravitationally lensed quasar

    Full text link
    We report the discovery of a gravitationally lensed quasar resulting from our survey for lenses in the southern sky. Radio images of PMN J1632-0033 with the VLA and ATCA exhibit two compact, flat-spectrum components with separation 1.47" and flux density ratio 13.2. Images with the HST reveal the optical counterparts to the radio components and also the lens galaxy. An optical spectrum of the bright component, obtained with the first Magellan telescope, reveals quasar emission lines at redshift 3.42. Deeper radio images with MERLIN and the VLBA reveal a faint third radio component located near the center of the lens galaxy, which is either a third image of the background quasar or faint emission from the lens galaxy.Comment: 21 pp., including 4 figures; thoroughly revised in light of new MERLIN/HST data; accepted for publication in A

    The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate Selection Algorithm

    Get PDF
    We present an algorithm for selecting an uniform sample of gravitationally lensed quasar candidates from low-redshift (0.6<z<2.2) quasars brighter than i=19.1 that have been spectroscopically identified in the SDSS. Our algorithm uses morphological and color selections that are intended to identify small- and large-separation lenses, respectively. Our selection algorithm only relies on parameters that the SDSS standard image processing pipeline generates, allowing easy and fast selection of lens candidates. The algorithm has been tested against simulated SDSS images, which adopt distributions of field and quasar parameters taken from the real SDSS data as input. Furthermore, we take differential reddening into account. We find that our selection algorithm is almost complete down to separations of 1'' and flux ratios of 10^-0.5. The algorithm selects both double and quadruple lenses. At a separation of 2'', doubles and quads are selected with similar completeness, and above (below) 2'' the selection of quads is better (worse) than for doubles. Our morphological selection identifies a non-negligible fraction of single quasars: To remove these we fit images of candidates with a model of two point sources and reject those with unusually small image separations and/or large magnitude differences between the two point sources. We estimate the efficiency of our selection algorithm to be at least 8% at image separations smaller than 2'', comparable to that of radio surveys. The efficiency declines as the image separation increases, because of larger contamination from stars. We also present the magnification factor of lensed images as a function of the image separation, which is needed for accurate computation of magnification bias.Comment: 15 pages, 17 figures, 4 tables, accepted for publication in A

    Determining the Lensing Fraction of SDSS Quasars: Methods and Results from the EDR

    Get PDF
    We present an algorithm for selecting gravitational lens candidates from amongst Sloan Digital Sky Survey (SDSS) quasars. In median Early Data Release (EDR) conditions, the algorithm allows for the recovery of pairs of equal flux point sources down to separations of \sim 0{\farcs}7 or with flux ratios up to ∌\sim 10:1 at a separation of 1\farcs5. The algorithm also recovers a wide variety of plausible quad geometries. We also present a method for determining the selection function of this algorithm through the use of simulated SDSS images and introduce a method for calibrating our simulated images through truth-testing with real SDSS data. Finally, we apply our algorithm and selection function to SDSS quasars from the EDR to get an upper bound on the lensing fraction. We find 13 candidates among 5120 z >> 0.6 SDSS quasars, implying an observed lensing fraction of not more than 4 ×10−3\times 10^{-3}. There is one likely lens system in our final sample, implying an observed lensing fraction of not less than 3×10−53 \times 10^{-5} (95% confidence levels).Comment: Accepted for publication in The Astronomical Journal, 48 pages, 15 figure

    SDSS J115517.35+634622.0: A Newly Discovered Gravitationally Lensed Quasar

    Full text link
    We report the discovery of SDSSJ115517.35+634622.0, a previously unknown gravitationally lensed quasar. The lens system exhibits two images of a z=2.89z = 2.89 quasar, with an image separation of 1{\farcs}832 \pm 0.007 . Near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Based on absorption features seen in the Sloan Digital Sky Survey (SDSS) spectrum, we determine a lens galaxy redshift of z=0.1756z = 0.1756. The lens is rather unusual in that one of the quasar images is only 0{\farcs}22\pm0{\farcs}07 (∌0.1Reff\sim 0.1 R_{\rm eff}) from the center of the lens galaxy and photometric modeling indicates that this image is significantly brighter than predicted by a SIS model. This system was discovered in the course of an ongoing search for strongly lensed quasars in the dataset from the SDSS.Comment: 18 pages, 6 figures. Accepted for publication in A

    Discovering Gravitational Lenses Through Measurements Of Their Time Delays

    Full text link
    We consider the possibility that future wide-field time-domain optical imaging surveys may be able to discover gravitationally lensed quasar pairs through serendipitous measurements of their time delays. We discuss the merits such a discovery technique would have relative to conventional lens searches. Using simulated quasar lightcurves, we demonstrate that in a survey which observes objects several times each lunar cycle over the course of five years, it is possible to improve the efficiency of a gravitational lens search by 2-3 orders of magnitude through the use of time delay selection. In the most advantageous scenario considered, we are able to improve efficiency by a factor of 1000 with no loss of completeness. In the least advantageous scenario, we are able to improve efficiency by a factor of 110 while reducing completeness by a factor of 9. We show that window function effects associated with the length of the observing season are more important than the total number of datapoints in determining the effectiveness of this method. We also qualitatively discuss several complications which might be relevant to a real time delay search.Comment: 22 pages, 7 figures. Submitted to Ap

    Modelling and peeling extended sources with shapelets: a Fornax A case study

    Get PDF
    To make a power spectrum (PS) detection of the 21 cm signal from the Epoch of Reionisation (EoR), one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with multi-scale (MS) CLEAN components to 'shapelets', an alternative set of basis functions. We introduce a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities, and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale emission well, even when the angular-resolution of the data is changed. We find that when increasing the angular-resolution of the data, the MS CLEAN model worsens at large angular-scales. When testing on real MWA data, the expected improvement is not seen in real data because of the other dominating systematics still present. Through further simulation we find the expected differences to be lower than obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting extended galaxies, and may prove essential for an EoR detection in the future, once other systematics have been addressed.Comment: 17 pages, 11 Figures, accepted for publication in Publications of the Astronomical Society of Australia (18/05/2020). "For the SHAMFI code, see: https://github.com/JLBLine/SHAMFI" . "For the SHAMFI documentation, see: https://shamfi.readthedocs.io/" . "For the WODEN code and documentation see: https://github.com/JLBLine/WODEN
    • 

    corecore