3,537 research outputs found

    Thin films flowing down inverted substrates: Three dimensional flow

    Full text link
    We study contact line induced instabilities for a thin film of fluid under destabilizing gravitational force in three dimensional setting. In the previous work (Phys. Fluids, {\bf 22}, 052105 (2010)), we considered two dimensional flow, finding formation of surface waves whose properties within the implemented long wave model depend on a single parameter, D=(3Ca)1/3cotαD=(3Ca)^{1/3}\cot\alpha, where CaCa is the capillary number and α\alpha is the inclination angle. In the present work we consider fully 3D setting and discuss the influence of the additional dimension on stability properties of the flow. In particular, we concentrate on the coupling between the surface instability and the transverse (fingering) instabilities of the film front. We furthermore consider these instabilities in the setting where fluid viscosity varies in the transverse direction. It is found that the flow pattern strongly depends on the inclination angle and the viscosity gradient

    Non-equilibrium raft-like membrane domains under continuous recycling

    Full text link
    We present a model for the kinetics of spontaneous membrane domain (raft) assembly that includes the effect of membrane recycling ubiquitous in living cells. We show that the domains have a broad power-law distribution with an average radius that scales with the 1/4 power of the domain lifetime when the line tension at the domain edges is large. For biologically reasonable recycling and diffusion rates the average domain radius is in the tens of nm range, consistent with observations. This represents one possible link between signaling (involving rafts) and traffic (recycling) in cells. Finally, we present evidence that suggests that the average raft size may be the same for all scale-free recycling schemes.Comment: 8 pages, 5 figure

    On Paragrassmann Differential Calculus

    Get PDF
    Explicit general constructions of paragrassmann calculus with one and many variables are given. Relations of the paragrassmann calculus to quantum groups are outlined and possible physics applications are briefly discussed. This paper is the same as the original 9210075 except added Appendix and minor changes in Acknowledgements and References. IMPORTANT NOTE: This paper bears the same title as the Dubna preprint E5-92-392 but is NOT identical to it, containing new results, extended discussions, and references.Comment: 19p

    Electrical discharges in the atmosphere of Venus

    Get PDF
    Data received from Venera 11 and 12 experiments involving the electrical activity of the atmosphere of Venus show that the electrical discharges occur in the cloud layer. Their energy is roughly the same as in terrestrial lightning, but with a pulse repetition frequency of the discharges which is much greater

    Global generalized solutions for Maxwell-alpha and Euler-alpha equations

    Full text link
    We study initial-boundary value problems for the Lagrangian averaged alpha models for the equations of motion for the corotational Maxwell and inviscid fluids in 2D and 3D. We show existence of (global in time) dissipative solutions to these problems. We also discuss the idea of dissipative solution in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit

    Nambu-Poisson manifolds and associated n-ary Lie algebroids

    Full text link
    We introduce an n-ary Lie algebroid canonically associated with a Nambu-Poisson manifold. We also prove that every Nambu-Poisson bracket defined on functions is induced by some differential operator on the exterior algebra, and characterize such operators. Some physical examples are presented

    Nucleon-nucleon interaction in the JJ-matrix inverse scattering approach and few-nucleon systems

    Full text link
    The nucleon-nucleon interaction is constructed by means of the JJ-matrix version of inverse scattering theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasi-tridiagonal forms of the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained interaction is very accurate in reproducing the NNNN scattering data and deuteron properties. The interaction is used in the no-core shell model calculations of 3^3H and 4^4He nuclei. The resulting binding energies of 3^3H and 4^4He are very close to experimental values.Comment: Text is revised, new figures and references adde

    Classical and Quantum Nambu Mechanics

    Get PDF
    The classical and quantum features of Nambu mechanics are analyzed and fundamental issues are resolved. The classical theory is reviewed and developed utilizing varied examples. The quantum theory is discussed in a parallel presentation, and illustrated with detailed specific cases. Quantization is carried out with standard Hilbert space methods. With the proper physical interpretation, obtained by allowing for different time scales on different invariant sectors of a theory, the resulting non-Abelian approach to quantum Nambu mechanics is shown to be fully consistent.Comment: 44 pages, 1 figure, 1 table Minor changes to conform to journal versio

    Observation of Kink Instability as Driver of Recurrent Flares in AR 10960

    Full text link
    We study the active region NOAA 10960, which produces two flare events (B5.0, M8.9) on 04 June 2007. We find the observational signature of right handed helical twists in the loop system associated with this active region. The first B5.0 flare starts with the activation of helical twist showing ~3 turns. However, after ~20 minutes another helical twist (with ~2 turns) appears, which triggers M8.9 flare. Both helical structures were closely associated with a small positive polarity sunspot in the AR. We interpret these observations as evidence of kink instability, which triggers the recurrent solar flares.Comment: 11 pages, 5 figures, Accepted for the Publication in Advances in Geoscience

    On the Weyl - Eddington - Einstein affine gravity in the context of modern cosmology

    Full text link
    We propose new models of an `affine' theory of gravity in DD-dimensional space-times with symmetric connections. They are based on ideas of Weyl, Eddington and Einstein and, in particular, on Einstein's proposal to specify the space - time geometry by use of the Hamilton principle. More specifically, the connection coefficients are derived by varying a `geometric' Lagrangian that is supposed to be an arbitrary function of the generalized (non-symmetric) Ricci curvature tensor (and, possibly, of other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. In addition to the standard Einstein gravity, such a theory predicts dark energy (the cosmological constant, in the first approximation), a neutral massive (or, tachyonic) vector field, and massive (or, tachyonic) scalar fields. These fields couple only to gravity and may generate dark matter and/or inflation. The masses (real or imaginary) have geometric origin and one cannot avoid their appearance in any concrete model. Further details of the theory - such as the nature of the vector and scalar fields that can describe massive particles, tachyons, or even `phantoms' - depend on the concrete choice of the geometric Lagrangian. In `natural' geometric theories, which are discussed here, dark energy is also unavoidable. Main parameters - mass, cosmological constant, possible dimensionless constants - cannot be predicted, but, in the framework of modern `multiverse' ideology, this is rather a virtue than a drawback of the theory. To better understand possible applications of the theory we discuss some further extensions of the affine models and analyze in more detail approximate (`physical') Lagrangians that can be applied to cosmology of the early Universe.Comment: 15 pages; a few misprints corrected, one footnote removed and two added, the formulae and results unchanged but the text somewhat edited, esp. in Sections 4,5; the reference to the RFBR grant corrected
    corecore