7,342 research outputs found
Decentralization in Bitcoin and Ethereum Networks
Blockchain-based cryptocurrencies have demonstrated how to securely implement
traditionally centralized systems, such as currencies, in a decentralized
fashion. However, there have been few measurement studies on the level of
decentralization they achieve in practice. We present a measurement study on
various decentralization metrics of two of the leading cryptocurrencies with
the largest market capitalization and user base, Bitcoin and Ethereum. We
investigate the extent of decentralization by measuring the network resources
of nodes and the interconnection among them, the protocol requirements
affecting the operation of nodes, and the robustness of the two systems against
attacks. In particular, we adapted existing internet measurement techniques and
used the Falcon Relay Network as a novel measurement tool to obtain our data.
We discovered that neither Bitcoin nor Ethereum has strictly better properties
than the other. We also provide concrete suggestions for improving both
systems.Comment: Financial Cryptography and Data Security 201
ATLAS silicon module assembly and qualification tests at IFIC Valencia
ATLAS experiment, designed to probe the interactions of particles emerging
out of proton proton collisions at energies of up to 14 TeV, will assume
operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper
discusses the assembly and the quality control tests of forward detector
modules for the ATLAS silicon microstrip detector assembled at the Instituto de
Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures
are outlined and the laboratory equipment is briefly described. Emphasis is
given on the module quality achieved in terms of mechanical and electrical
stability.Comment: 23 pages, 38 EPS figures, uses JINST LaTeX clas
Trapping atoms in the vacuum field of a cavity
The aim of this work is to find ways to trap an atom in a cavity. In contrast
to other approaches we propose a method where the cavity is basically in the
vacuum state and the atom in the ground state. The idea is to induce a spatial
dependent AC Stark shift by irradiating the atom with a weak laser field, so
that the atom experiences a trapping force. The main feature of our setup is
that dissipation can be strongly suppressed. We estimate the lifetime of the
atom as well as the trapping potential parameters and compare our estimations
with numerical simulations.Comment: 8 pages, 8 figure
Communities and patterns of scientific collaboration in Business and Management
This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape
Community structure and patterns of scientific collaboration in Business and Management
This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape
Observation of a pairing pseudogap in a two-dimensional Fermi gas
Pairing of fermions is ubiquitous in nature and it is responsible for a large
variety of fascinating phenomena like superconductivity, superfluidity of
He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in
strongly interacting Fermi gases. When confined to two dimensions, interacting
many-body systems bear even more subtle effects, many of which lack
understanding at a fundamental level. Most striking is the, yet unexplained,
effect of high-temperature superconductivity in cuprates, which is intimately
related to the two-dimensional geometry of the crystal structure. In
particular, the questions how many-body pairing is established at high
temperature and whether it precedes superconductivity are crucial to be
answered. Here, we report on the observation of pairing in a harmonically
trapped two-dimensional atomic Fermi gas in the regime of strong coupling. We
perform momentum-resolved photoemission spectroscopy, analogous to ARPES in the
solid state, to measure the spectral function of the gas and we detect a
many-body pairing gap above the superfluid transition temperature. Our
observations mark a significant step in the emulation of layered
two-dimensional strongly correlated superconductors using ultracold atomic
gases
Subclinical salmonella infection in Danish finishing herds - prevalence of S. enterica measured by bacteriological and serological examination
Subclinically salmonella infected herds may represent a contamination risk for pork products although no clinical signs are present. In the nation-wide Salmonella enterica surveillance and control programme in Danish slaughter pig herds (Mousing et al. 1997) the salmonella prevalence in Danish pig herds is being monitored. The monitoring is based on serological examination of meat juice (Nielsen et al. 1997). Serological examination of blood samples and bacteriological examination of pen samples is used as follow-up
- …