9,336 research outputs found

    Bright-like soliton solution in quasi-one-dimensional BEC in third order on interaction radius

    Full text link
    Nonlinear Schr\"{o}dinger equations and corresponding quantum hydrodynamic (QHD) equations are widely used in studying ultracold boson-fermion mixtures and superconductors. In this article, we show that a more exact account of interaction in Bose-Einstein condensate (BEC), in comparison with the Gross-Pitaevskii (GP) approximation, leads to the existence of a new type of solitons. We use a set of QHD equations in the third order by the interaction radius (TOIR), which corresponds to the GP equation in a first order by the interaction radius. The solution for the soliton in a form of expression for the particle concentration is obtained analytically. The conditions of existence of the soliton are studied. It is shown what solution exists if the interaction between the particles is repulsive. Particle concentration of order of 101210^{12}-101410^{14} cm−3cm^{-3} has been achieved experimentally for the BEC, the solution exists if the scattering length is of the order of 1 μ\mum, which can be reached using the Feshbach resonance. It is one of the limit case of existence of new solution. The corresponding scattering length decrease with the increasing of concentration of particles. The investigation of effects in the TOIR approximation gives a more detail information on interaction potentials between the atoms and can be used for a more detail investigation into the potential structure.Comment: 7 pages, 3 figure

    Critical velocity of flowing supersolids of dipolar Bose gases in optical lattices

    Full text link
    We study superfluidity of supersolid phases of dipolar Bose gases in two-dimensional optical lattices. We perform linear stability analyses for the corresponding dipolar Bose-Hubbard model in the hardcore boson limit to show that a supersolid can have stable superflow until the flow velocity reaches a certain critical value. The critical velocity for the supersolid is found to be significantly smaller than that for a conventional superfluid phase. We propose that the critical velocity can be used as a signature to identify the superfluidity of the supersolid phase in experiment.Comment: 7 pages, 4 figures, published versio

    Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems

    Get PDF
    A diagrammatic method is presented for averaging over the circular ensemble of random-matrix theory. The method is applied to phase-coherent conduction through a chaotic cavity (a ``quantum dot'') and through the interface between a normal metal and a superconductor.Comment: 37 pages RevTeX, 21 postscript figures include

    A quantum hydrodynamics approach to the formation of new types of waves in polarized two-dimension systems of charged and neutral particles

    Full text link
    In this paper we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Though we focused primarily on the two-dimension physical systems, the method is valid for three-dimension and one-dimension systems too. The presented method is based upon the Schr\"{o}dinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schr\"{o}dinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimension (2D) ion and hole gas placed into an external electric field which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma and 2D electron-hole plasma. Generation of waves in 3D system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.Comment: 15 pages, 7 figure

    Density Wave -Supersolid and Mott Insulator-Superfluid transition in presence of an artificial gauge field : a strong coupling perturbation approach

    Full text link
    We study the effect of an artificial gauge field on the zero temperature phase diagram of extended Bose Hubbard model, that describes ultra cold atoms in optical lattices with long range interaction using strong coupling perturbation theory . We determine analytically the effect of the artificial gauge field on the density wave - supersolid (DW-SS) and the the Mott insulator-superfluid (MI -SF) transition boundary . The momentum distribution at these two transition boundaries is also calculated in this approach. It is shown that such momentum distribution which can be observed in time of flight measurement, reveals the symmetry of the gauge potential through the formation of magnetic Brillouin zone and clearly distinguishes between the DW-SS and MI-SF boundary. We also point out that in symmetric gauge the momentum distribution structure at these transition boundaries bears distinctive signatures of vortices in supersolid and superfluid phases.Comment: 18 latexed two column pages including appendix, 9 .eps figures Figure positioning readjusted and one reference adde
    • …
    corecore