21 research outputs found

    LC nanocomposites: induced optical singularities, managed nano/micro structure, and electrical conductivity

    Full text link
    Microstructure, phase transitions, electrical conductivity, and optical and electrooptical properties of multiwalled carbon nanotubes (NTs), dispersed in the cholesteric liquid crystal (cholesteryl oleyl carbonate, COC), nematic 5CB and their mixtures, were studied in the temperature range between 255 K and 363 K. The relative concentration X=COC/(COC+5CB)was varied within 0.0-1.0. The concentration CpC_p of NTs was varied within 0.01-5% wt. The value of X affected agglomeration and stability of NTs inside COC+5CB. High-quality dispersion, exfoliation, and stabilization of the NTs were observed in COC solvent ("good" solvent). From the other side, the aggregation of NTs was very pronounced in nematic 5CB solvent ("bad" solvent). The dispersing quality of solvent influenced the percolation concentration CpC_p, corresponding to transition between the low conductive and high conductive states: e.g., percolation was observed at Cp=1C_p=1% and Cp=0.1C_p=0.1% for pure COC and 5CB, respectively. The effects of thermal pre-history on the heating-cooling hysteretic behavior of electrical conductivity were studied. The mechanism of dispersion of NTs in COC+5CB mixtures is discussed. Utilization of the mixtures of "good" and "bad" solvents allowed fine regulation of the dispersion, stability and electrical conductivity of LC+NTs composites. The mixtures of COC and 5CB were found to be promising for application as functional media with controllable useful chiral and electrophysical properties.Comment: 10 pages, 9 figure

    Intermolecular interactions of decamethoxinum and acetylsalicylic acid in systems of various complexity levels

    Get PDF
    Intermolecular interactions between decamethoxinum (DEC) and acetylsalicylic acid (ASА) have been studied in the phospholipid-containing systems of escalating complexity levels. The host media for these substances were solvents, L-α-dipalmitoylphosphatidylcholine (DPPC) membranes, and samples of human erythrocytes. Peculiar effects caused by DEC-ASА interaction have been observed in each system using appropriate techniques: (a) DEC-ASА non-covalent complexes formation in DPPC-containing systems were revealed by mass spectrometry with electrospray ionization; (b) joint DEC-ASА action on DPPC model membranes led to increasing of membrane melting temperature Tm, whereas individual drugs caused pronounced Tm decreasing, which was demonstrated by differential scanning calorimetry; (c) deceleration of DEC-induced haemolysis of erythrocytes under joint DEC-ASА application was observed by optical microscopy

    On proportionality of the light output of semiconductor scintillators under irradiation by alpha-particles and heavy ions

    No full text
    In the energy range E =2.8...42.2 MeV, the light output S was measured for ZnSe-based scintillators under irradiation with α- particles and heavy ions 81Br. Under such irradiation, the proportionality S(Еα,i) is observed up to energies Еα≤7 MeV. Substantial deviation from linearity in the region of higher energies is explained by different contribution to S from both primary and δ-electrons. Increases were also observed in the values of intrinsic energy resolution with shorter shaping time constants.Виміряно світловий вихід S для сцинтиляторів, заснованих на ZnSe, при опроміненні α-частками і важкими іонами 81Br у діапазоні енергій E =2.8...42.2 МеВ. При опроміненні спостерігалася пропорційність S(Е α ,i) до енергій Еα ≤7 МеВ. Істотне відхилення від лінійності в області більш високих енергій пояснюється різним внеском у S як первинних, так і δ-електронів. Помітний вплив на криву пропорційності і спектри енергії робило легування Te.Измерен световой выход S для сцинтилляторов, основанных на ZnSe, при облучении α-частицами и тяжелыми ионами 81Br в диапазоне энергий E=2.8...42.2 МэВ. При облучении наблюдалась пропорциональность S(Еα,i) до энергий Еα ≤7 МэВ. Существенное отклонение от линейности в области более высоких энергий объясняется различным вкладом в S как первичных, так и и δ-электронов. Заметное влияние на кривую пропорциональности и спектры энергии оказывало легирование Te

    Membranothropic properties of the urocanic acid

    No full text
    The effects of urocanic acid (UA) on thermodynamic parameters of model dipalmitoylphosphatidylcholine (DPPC) lipid membrane have been studied by means of differential scanning calorimet­ry (DSC). The observed ordering effect of UA on the lipid bilayer is reflected in the increase in both the main phase transition temperature and cooperative unit size of the lipid membrane. Analysis of FTIR spectra suggests localization of UA molecules in the vicinity of the polar heads and carbonyl groups of DPPC due to electrostatic interactions and H-bonds. On the basis of experimental data obtained and geometry parameters of UA and DPPC molecules, some variants of the UA localization in DPPC bilayer were discussed

    Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes

    No full text
    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates
    corecore