9,080 research outputs found

    Excitation of a Kaluza-Klein mode by parametric resonance

    Get PDF
    In this paper we investigate a parametric resonance phenomenon of a Kaluza-Klein mode in a DD-dimensional generalized Kaluza-Klein theory. As the origin of the parametric resonance we consider a small oscillation of a scale of the compactification around a today's value of it. To make our arguments definite and for simplicity we consider two classes of models of the compactification: those by SdS_{d} (d=D−4d=D-4) and those by Sd1×Sd2S_{d_{1}}\times S_{d_{2}} (d1≄d2d_1\ge d_2, d1+d2=D−4d_{1}+d_{2}=D-4). For these models we show that parametric resonance can occur for the Kaluza-Klein mode. After that, we give formulas of a creation rate and a number of created quanta of the Kaluza-Klein mode due to the parametric resonance, taking into account the first and the second resonance band. By using the formulas we calculate those quantities for each model of the compactification. Finally we give conditions for the parametric resonance to be efficient and discuss cosmological implications.Comment: 36 pages, Latex file, Accepted for publication in Physical Review

    Effect of inhomogeneities on the expansion rate of the Universe

    Full text link
    While the expansion rate of a homogeneous isotropic Universe is simply proportional to the square-root of the energy density, the expansion rate of an inhomogeneous Universe also depends on the nature of the density inhomogeneities. In this paper we calculate to second order in perturbation variables the expansion rate of an inhomogeneous Universe and demonstrate corrections to the evolution of the expansion rate. While we find that the mean correction is small, the variance of the correction on the scale of the Hubble radius is sensitive to the physical significance of the unknown spectrum of density perturbations beyond the Hubble radius.Comment: 19 pages, 2 figures Version 2 includes some changes in numerical factors and corrected typos. It is the version accepted for publication in Physical review

    Inflation-Produced Magnetic Fields in R^n F^2 and I F^2 models

    Full text link
    We re-analyze the production of seed magnetic fields during Inflation in (R/m^2)^n F_{\mu \nu}F^{\mu \nu} and I F_{\mu \nu}F^{\mu \nu} models, where n is a positive integer, R the Ricci scalar, m a mass parameter, and I \propto \eta^\alpha a power-law function of the conformal time \eta, with \alpha a positive real number. If m is the electron mass, the produced fields are uninterestingly small for all n. Taking m as a free parameter we find that, for n \geq 2, the produced magnetic fields can be sufficiently strong in order to seed dynamo mechanism and then to explain galactic magnetism. For \alpha \gtrsim 2, there is always a window in the parameters defining Inflation such that the generated magnetic fields are astrophysically interesting. Moreover, if Inflation is (almost) de Sitter and the produced fields almost scale-invariant (\alpha \simeq 4), their intensity can be strong enough to directly explain the presence of microgauss galactic magnetic fields.Comment: 5 pages, 2 figures. Minor revisions. References added. Accepted for publication in Phys. Rev.

    Conductivity in Jurkat cell suspension after ultrashort electric pulsing

    No full text
    Ultrashort electric pulses applied to similar cell lines such as Jurkat and HL-60 cells can produce markedly different results , which have been documented extensively over the last few years. We now report changes in electrical conductivity of Jurkat cells subjected to traditional electroporation pulses (50 ms pulse length) and ultrashort pulses (10 ns pulse length) using time domain dielectric spectroscopy (TDS). A single 10 ns, 150 kV/cm pulse did not noticeably alter suspension conductivity while a 50 ms, 2.12 kV/cm pulse with the same energy caused an appreciable conductivity rise. These results support the hypothesis that electroporation pulses primarily interact with the cell membrane and cause conductivity rises due to ion transport from the cell to the external media, while pulses with nanosecond duration primarily interact with the membranes of intracellular organelles. However, multiple ultrashort pulses have a cumulative effect on the plasma membrane, with five pulses causing a gradual rise in conductivity up to ten minutes post-pulsing

    Neutrino helicity asymmetries in leptogenesis

    Full text link
    It is pointed out that the heavy singlet neutrinos characteristic of leptogenesis develop asymmetries in the abundances of the two helicity states as a result of the same mechanism that generates asymmetries in the standard lepton sector. Neutrinos and standard leptons interchange asymmetries in collisions with each other. It is shown that an appropriate quantum number, B-L', combining baryon, lepton and neutrino asymmetries, is not violated as fast as the standard B-L. This suppresses the washout effects relevant for the derivation of the final baryon asymmetry. One presents detailed calculations for the period of neutrino thermal production in the framework of the singlet seesaw mechanism.Comment: 11 pages, 1 figure, revtex, matches PRD versio

    General plane wave mode functions for scalar-driven cosmology

    Full text link
    We give a solution for plane wave scalar, vector and tensor mode functions in the presence of any homogeneous, isotropic and spatially flat cosmology which is driven by a single, minimally coupled scalar. The solution is obtained by rescaling the various mode functions so that they reduce, with a suitable scale factor and a suitable time variable, to those of a massless, minimally coupled scalar. We then express the general solution in terms of co-moving time and the original scale factor.Comment: 6 pages, revtex4, no figures, revised version corrects an embarrassing mistake (in the published version) for the parameter q_C. Affected eqns are 45 and 6

    Axino dark matter in brane world cosmology

    Full text link
    We discuss dark matter in the brane world scenario. We work in the Randall-Sundrum type II brane world and assume that the lightest supersymmetric particle is the axino. We find that the axinos can play the role of cold dark matter in the universe, provided that the five-dimensional Planck mass is bounded both from below and from above. This is possible for higher reheating temperatures compared to the conventional four-dimensional cosmology due to a novel expansion law for the universe.Comment: 1+11 pages, version submitted to JCA

    Coideal Quantum Affine Algebra and Boundary Scattering of the Deformed Hubbard Chain

    Full text link
    We consider boundary scattering for a semi-infinite one-dimensional deformed Hubbard chain with boundary conditions of the same type as for the Y=0 giant graviton in the AdS/CFT correspondence. We show that the recently constructed quantum affine algebra of the deformed Hubbard chain has a coideal subalgebra which is consistent with the reflection (boundary Yang-Baxter) equation. We derive the corresponding reflection matrix and furthermore show that the aforementioned algebra in the rational limit specializes to the (generalized) twisted Yangian of the Y=0 giant graviton.Comment: 21 page. v2: minor correction

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Expanding Cosmologies in Brane Geometries

    Get PDF
    Five dimensional gravity coupled, both in the bulk and on a brane, to a scalar Liouville field yields a geometry confined to a strip around the brane and with time dependent scale factors for the four geometry. In various limits known models can be recovered as well as a temporally expanding four geometry with a warp factor falling exponentially away from the brane. The effective theory on the brane has a time dependent Planck mass and ``cosmological constant''. Although the scale factor expands, the expansion is not an acceleration.Comment: 7 pages, LaTex/RevTex
    • 

    corecore