1,925 research outputs found

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    Exciting dark matter in the galactic center

    Full text link
    We reconsider the proposal of excited dark matter (DM) as an explanation for excess 511 keV gamma rays from positrons in the galactic center. We quantitatively compute the cross section for DM annihilation to nearby excited states, mediated by exchange of a new light gauge boson with off-diagonal couplings to the DM states. In models where both excited states must be heavy enough to decay into e^+ e^- and the ground state, the predicted rate of positron production is never large enough to agree with observations, unless one makes extreme assumptions about the local circular velocity in the Milky Way, or alternatively if there exists a metastable population of DM states which can be excited through a mass gap of less than 650 keV, before decaying into electrons and positrons.Comment: Dedicated to the memory of Lev Kofman; 16 pages, 9 figures; v3 added refs, minor changes, accepted to PR

    Investigation of the Gravitational Potential Dependence of the Fine-Structure Constant Using Atomic Dysprosium

    Full text link
    Radio-frequency E1 transitions between nearly degenerate, opposite parity levels of atomic dysprosium were monitored over an eight month period to search for a variation in the fine-structure constant. During this time period, data were taken at different points in the gravitational potential of the Sun. The data are fitted to the variation in the gravitational potential yielding a value of (8.7±6.6)×106(-8.7 \pm 6.6) \times 10^{-6} for the fit parameter kαk_\alpha. This value gives the current best laboratory limit. In addition, our value of kαk_{\alpha} combined with other experimental constraints is used to extract the first limits on k_e and k_q. These coefficients characterize the variation of m_e/m_p and m_q/m_p in a changing gravitational potential, where m_e, m_p, and m_q are electron, proton, and quark masses. The results are ke=(4.9±3.9)×105k_e = (4.9 \pm 3.9) \times 10^{-5} and kq=(6.6±5.2)×105k_q = (6.6 \pm 5.2) \times 10^{-5}.Comment: 6 pages, 3 figure

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    Detectability of GRB optical afterglows with Gaia satellite

    Full text link
    With the launch of Gaia satellite, detection of many different types of transient sources will be possible, one of them being optical afterglows of gamma-ray bursts (GRBs). Using the knowledge of the satellites dynamics and properties of GRB optical afterglows we performed a simulation in order to estimate an average GRB detection rate with Gaia. Here we present the simulation results for two types of GRB optical afterglows, differing in the observer's line-of-sight compared to a GRB jet axis: regular (on-axis) and orphan afterglows. Results show that for on-axis GRBs, less than 10 detections in five years of foreseen Gaia operational time are expected. The orphan afterglows simulation results are more promising, giving a more optimistic number of several tens of detections in five years.Comment: 14 pages, 10 figures, accepted to PAS

    Nonlinear dynamics of two coupled nano-electromechanical resonators

    Full text link
    As a model of coupled nano-electromechanical resonantors we study two nonlinear driven oscillators with an arbitrary coupling strength between them. Analytical expressions are derived for the oscillation amplitudes as a function of the driving frequency and for the energy transfer rate between the two oscillators. The nonlinear restoring forces induce the expected nonlinear resonance structures in the amplitude-frequency characteristics with asymmetric resonance peaks. The corresponding multistable behavior is shown to be an efficient tool to control the energy transfer arising from the sensitive response to small changes in the driving frequency. Our results imply that the nonlinear response can be exploited to design precise sensors for mass or force detection experiments based on nano-electromechanical resonators.Comment: 19 pages, 2 figure

    On the regularization scheme and gauge choice ambiguities in topologically massive gauge theories

    Full text link
    It is demonstrated that in the (2+1)-dimensional topologically massive gauge theories an agreement of the Pauli-Villars regularization scheme with the other schemes can be achieved by employing pairs of auxiliary fermions with the opposite sign masses. This approach does not introduce additional violation of discrete (P and T) symmetries. Although it breaks the local gauge symmetry only in the regulator fields' sector, its trace disappears completely after removing the regularization as a result of superrenormalizability of the model. It is shown also that analogous extension of the Pauli-Villars regularization in the vector particle sector can be used to agree the arbitrary covariant gauge results with the Landau ones. The source of ambiguities in the covariant gauges is studied in detail. It is demonstrated that in gauges that are softer in the infrared region (e.g. Coulomb or axial) nonphysical ambiguities inherent to the covariant gauges do not arise.Comment: Latex, 13 pages. Replaced mainly to change preprint references to journal one

    Towards an interactive, process-based approach to understanding range shifts : developmental and environmental dependencies matter

    Get PDF
    Funding – Funding received from NERC DTP. Supplementary material (Appendix ECOG‐03975 at ). Appendix 1.Peer reviewedPostprin

    Electromagnetic properties of non-Dirac particles with rest spin 1/2

    Full text link
    We resolve a number of questions related to an analytic description of electromagnetic form factors of non-Dirac particles with the rest spin 1/2. We find the general structure of a matrix antisymmetric tensor operator. We obtain two recurrence relations for matrix elements of finite transformations of the proper Lorentz group and explicit formulas for a certain set of such elements. Within the theory of fields with double symmetry, we discuss writing the components of wave vectors of particles in the form of infinite continued fractions. We show that for Q20.5Q^{2} \leq 0.5 (GeV/c)2^{2}, where Q2Q^{2} is the transferred momentum squared, electromagnetic form factors that decrease as Q2Q^{2} increases and are close to those experimentally observed in the proton can be obtained without explicitly introducing an internal particle structure.Comment: 18 pages, 2 figure
    corecore