16 research outputs found

    Mobility Edge in Aperiodic Kronig-Penney Potentials with Correlated Disorder: Perturbative Approach

    Full text link
    It is shown that a non-periodic Kronig-Penney model exhibits mobility edges if the positions of the scatterers are correlated at long distances. An analytical expression for the energy-dependent localization length is derived for weak disorder in terms of the real-space correlators defining the structural disorder in these systems. We also present an algorithm to construct a non-periodic but correlated sequence exhibiting desired mobility edges. This result could be used to construct window filters in electronic, acoustic, or photonic non-periodic structures.Comment: RevTex, 4 pages including 2 Postscript figure

    Metafluid with anisotropic dynamic mass

    No full text
    We show that a fluid filling the space between metallic cylinders arranged in a two-dimensional lattice exhibits anisotropic dynamic mass for sound waves propagating through the lattice, if its unit cell is anisotropic. Using the plane-waves expansion method we derive (in the long wavelength limit) a formula for the effective mass tensor of the metafluid. The proposed formula is very general — it is valid for arbitrary Bravais lattices and arbitrary filling fractions of the cylinders. We apply our method to a periodic structure with very high anisotropy, when other known methods fail. In particular, we calculate the effective mass tensor for sound waves in air with embedded lattice of aluminum cylinders having rectangular cross sections, and obtain excellent agreement with experiment. The proposed method of calculation may find numerous applications for tailoring of metafluids with prescribed anisotropy

    Index of refraction of a photonic crystal of carbon nanotubes and homogenization of optically anisotropic periodic composites

    No full text
    We consider the long-wavelength limit for a periodic arrangement of carbon nanotubes. Using the Fourier expansion method we develop an effective-medium theory for photonic crystal of aligned optically anisotropic cylinders. Exact analytical formulas for the effective dielectric constants for the E and H eigenmodes are obtained for arbitrary 2D Bravais lattice and arbitrary cross-section of anisotropic cylinders. It is shown that depending on the symmetry of the unit cell photonic crystal of anisotropic cylinders behaves in the low-frequency limit like uniaxial or biaxial optical crystal. The developed theory of homogenization is in a good agreement with existing experimental results for the dielectric tensor of photonic crystals of carbon nanotubes
    corecore