6,060 research outputs found

    On the shapes of elementary domains or why Mandelbrot Set is made from almost ideal circles?

    Get PDF
    Direct look at the celebrated "chaotic" Mandelbrot Set in Fig..\ref{Mand2} immediately reveals that it is a collection of almost ideal circles and cardioids, unified in a specific {\it forest} structure. In /hep-th/9501235 a systematic algebro-geometric approach was developed to the study of generic Mandelbrot sets, but emergency of nearly ideal circles in the special case of the family x2+cx^2+c was not fully explained. In the present paper the shape of the elementary constituents of Mandelbrot Set is explicitly {\it calculated}, and difference between the shapes of {\it root} and {\it descendant} domains (cardioids and circles respectively) is explained. Such qualitative difference persists for all other Mandelbrot sets: descendant domains always have one less cusp than the root ones. Details of the phase transition between different Mandelbrot sets are explicitly demonstrated, including overlaps between elementary domains and dynamics of attraction/repulsion regions. Explicit examples of 3-dimensional sections of Universal Mandelbrot Set are given. Also a systematic small-size approximation is developed for evaluation of various Feigenbaum indices.Comment: 65 pages, 30 figure

    Free-Field Representation of Group Element for Simple Quantum Group

    Get PDF
    A representation of the group element (also known as ``universal T{\cal T}-matrix'') which satisfies Δ(g)=gg\Delta(g) = g\otimes g, is given in the form g=(s=1dB.> E1/qi(s)(χ(s)Ti(s)))q2ϕH(s=1dB.< Eqi(s)(ψ(s)T+i(s))) g = \left(\prod_{s=1}^{d_B}\phantom.^>\ {\cal E}_{1/q_{i(s)}}(\chi^{(s)}T_{-i(s)})\right) q^{2\vec\phi\vec H} \left(\prod_{s=1}^{d_B}\phantom.^<\ {\cal E}_{q_{i(s)}}(\psi^{(s)} T_{+i(s)})\right) where dB=12(dGrG)d_B = \frac{1}{2}(d_G - r_G), qi=qαi2/2q_i = q^{|| \vec\alpha_i||^2/2} and Hi=2Hαi/αi2H_i = 2\vec H\vec\alpha_i/||\vec\alpha_i||^2 and T±iT_{\pm i} are the generators of quantum group associated respectively with Cartan algebra and the {\it simple} roots. The ``free fields'' $\chi,\ \vec\phi,\ \psiformaHeisenberglikealgebra: form a Heisenberg-like algebra: \psi^{(s)}\psi^{(s')} = q^{-\vec\alpha_{i(s)} \vec\alpha_{i(s')}} \psi^{(s')}\psi^{(s)}, & \chi^{(s)}\chi^{(s')} = q^{-\vec\alpha_{i(s)}\vec\alpha_{i(s')}} \chi^{(s')}\chi^{(s)}& {\rm for} \ s<s', \\ q^{\vec h\vec\phi}\psi^{(s)} = q^{\vec h\vec\alpha_{i(s)}} \psi^{(s)}q^{\vec h\vec\phi}, & q^{\vec h\vec\phi}\chi^{(s)} = q^{\vec h \vec\alpha_{i(s)}}\chi^{(s)}q^{\vec h\vec\phi}, & \\ &\psi^{(s)} \chi^{(s')} = \chi^{(s')}\psi^{(s)} & {\rm for\ any}\ s,s'.Wearguethatthe We argue that the d_Gparametricmanifoldwhich-parametric ``manifold'' which gspansintheoperatorvalueduniversalenveloppingalgebra,canalsobeinvariantunderthegroupmultiplication spans in the operator-valued universal envelopping algebra, can also be invariant under the group multiplication g \rightarrow g'\cdot g''.Theuniversal. The universal {\cal R}matrixwiththepropertythat-matrix with the property that {\cal R} (g\otimes I)(I\otimes g) = (I\otimes g)(g\otimes I){\cal R}isgivenbytheusualformula is given by the usual formula R=qijrGαi2αj2(αα)ij1HiHjα>0dBEqα((qαqα1)TαTα).{\cal R} = q^{-\sum_{ij}^{r_G}||\vec\alpha_i||^2|| \vec\alpha_j||^2 (\vec\alpha\vec\alpha)^{-1}_{ij}H_i \otimes H_j}\prod_{ \vec\alpha > 0}^{d_B}{\cal E}_{q_{\vec\alpha}}\left(-(q_{\vec\alpha}- q_{\vec\alpha}^{-1})T_{\vec\alpha}\otimes T_{-\vec\alpha}\right).$Comment: 68 page

    Realistic interatomic potential for MD simulations

    Get PDF
    The coefficients of interatomic potential of simple form Exp-6 for neon are obtained. Repulsive part is calculated ab-initio in the Hartree-Fock approximation using the basis of atomic orbitals orthogonalized exactly on different lattice sites. Attractive part is determined empirically using single fitting parameter. The potential obtained describes well the equation of state and elastic moduli of neon crystal in wide range of interatomic distances and it is appropriate for molecular dynamic simulations of high temperature properties and phenomena in crystals and liquids.Comment: MikTex v.2.1 (AMS-TEX),11 pages, 3 EPS figure

    Surface EM waves on 1D Photonic Crystals

    Get PDF
    We study surface states of 1D photonic crystals using a semiclassical coupled wave theory. Both TE and TM modes are treated. We derive analytic approximations that clarify the systematics of the dispersion relations, and the roles of the various parameters defining the crystal.Comment: 7 pages, 8 figure
    corecore