359 research outputs found
Digital Dilemma 2018: Digital Presentations in Biological Anthropology and Bioarchaeology
In academia, funding for conference attendance is limited, and both students and early-career researchers are therefore only able to attend a limited number of conferences. This means that, typically, researchers need to choose between attending multiple local and, at times, more affordable conferences, or one or two large, expensive, international conferences. Local and less expensive conferences may be research-specific but will have a smaller audience and lower networking potential. In biological anthropology and bioarchaeology, the majority of these larger annual conferences are held in North America and Western Europe where travel and accommodation costs can be very high for those outside of these regions. These costs, in addition to visa restrictions, reduce the diversity of participants at academic conferences, skewing attendance to students and researchers from the host countries. Not only does this disadvantage individuals outside of the typical host-countries, but it also limits the breadth of academic dialogue, with inclusion in academic conferences determined all too often by financial resources rather than academic value. This paper discusses the demographics and lack of diversity at some of these large conferences and the factors that are known to limit international conference travel. It then presents the benefits of digital presentation methods using Digital Dilemma 2018 as a case study for how digital presentation methods can be combined with physical presentations at minimal cost and time. We hope that this will encourage more conferences to offer a digital presentation option in the future
Digital Dilemma 2018
In October 2018 a one-day conference was held at the UCL Institute of Archaeology focussing on the ‘Digital Dilemma’ in biological archaeology —specifically human remains research where the use of digitisation methods have increased exponentially over the last decade while comparatively little discussion of the ethical and legal considerations of these data has taken place. Papers presented at Digital Dilemma 2018 explored the use of digital data in human remains research, discussing both the benefits provided by these data, areas of ethical or methodological concern and suggestions for future research. This paper and the following conference proceedings will discuss this research demonstrating the importance that this Digital Dilemma in archaeology continues to be discussed and considered in future research
Maximal height statistics for 1/f^alpha signals
Numerical and analytical results are presented for the maximal relative
height distribution of stationary periodic Gaussian signals (one dimensional
interfaces) displaying a 1/f^alpha power spectrum. For 0<alpha<1 (regime of
decaying correlations), we observe that the mathematically established limiting
distribution (Fisher-Tippett-Gumbel distribution) is approached extremely
slowly as the sample size increases. The convergence is rapid for alpha>1
(regime of strong correlations) and a highly accurate picture gallery of
distribution functions can be constructed numerically. Analytical results can
be obtained in the limit alpha -> infinity and, for large alpha, by
perturbation expansion. Furthermore, using path integral techniques we derive a
trace formula for the distribution function, valid for alpha=2n even integer.
From the latter we extract the small argument asymptote of the distribution
function whose analytic continuation to arbitrary alpha > 1 is found to be in
agreement with simulations. Comparison of the extreme and roughness statistics
of the interfaces reveals similarities in both the small and large argument
asymptotes of the distribution functions.Comment: 17 pages, 8 figures, RevTex
Dynamic behavior of anisotropic non-equilibrium driving lattice gases
It is shown that intrinsically anisotropic non-equilibrium systems relaxing
by a dynamic process exhibit universal critical behavior during their evolution
toward non-equilibrium stationary states. An anisotropic scaling anzats for the
dynamics is proposed and tested numerically. Relevant critical exponents can be
evaluated self-consistently using both the short- and long-time dynamics
frameworks. The obtained results allow us to clarify a long-standing
controversy about the theoretical description, the universality and the origin
of the anisotropy of driven diffusive systems, showing that the standard field
theory does not hold and supporting a recently proposed alternative theory.Comment: 4 pages, 2 figure
Study of the one-dimensional off-lattice hot-monomer reaction model
Hot monomers are particles having a transient mobility (a ballistic flight)
prior to being definitely absorbed on a surface. After arriving at a surface,
the excess energy coming from the kinetic energy in the gas phase is dissipated
through degrees of freedom parallel to the surface plane. In this paper we
study the hot monomer-monomer adsorption-reaction process on a continuum
(off-lattice) one-dimensional space by means of Monte Carlo simulations. The
system exhibits second-order irreversible phase transition between a reactive
and saturated (absorbing) phases which belong to the directed percolation (DP)
universality class. This result is interpreted by means of a coarse-grained
Langevin description which allows as to extend the DP conjecture to transitions
occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.
Critical behavior of a one-dimensional monomer-dimer reaction model with lateral interactions
A monomer-dimer reaction lattice model with lateral repulsion among the same
species is studied using a mean-field analysis and Monte Carlo simulations. For
weak repulsions, the model exhibits a first-order irreversible phase transition
between two absorbing states saturated by each different species. Increasing
the repulsion, a reactive stationary state appears in addition to the saturated
states. The irreversible phase transitions from the reactive phase to any of
the saturated states are continuous and belong to the directed percolation
universality class. However, a different critical behavior is found at the
point where the directed percolation phase boundaries meet. The values of the
critical exponents calculated at the bicritical point are in good agreement
with the exponents corresponding to the parity-conserving universality class.
Since the adsorption-reaction processes does not lead to a non-trivial local
parity-conserving dynamics, this result confirms that the twofold symmetry
between absorbing states plays a relevant role in determining the universality
class. The value of the exponent , which characterizes the
fluctuations of an interface at the bicritical point, supports the
Bassler-Brown's conjecture which states that this is a new exponent in the
parity-conserving universality class.Comment: 19 pages, 22 figures, to be published in Phys. Rev
Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain
We study the equilibrium properties of a lattice-gas model of an catalytic reaction on a one-dimensional chain in contact with a reservoir
for the particles. The particles of species and are in thermal contact
with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty
lattice sites and may desorb from the lattice. If adsorbed and
particles appear at neighboring lattice sites they instantaneously react and
both desorb. For this model of a catalytic reaction in the
adsorption-controlled limit, we derive analytically the expression of the
pressure and present exact results for the mean densities of particles and for
the compressibilities of the adsorbate as function of the chemical potentials
of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.
Nonextensivity of the cyclic Lattice Lotka Volterra model
We numerically show that the Lattice Lotka-Volterra model, when realized on a
square lattice support, gives rise to a {\it finite} production, per unit time,
of the nonextensive entropy . This finiteness only occurs for for the growth mode
(growing droplet), and for for the one (growing stripe). This
strong evidence of nonextensivity is consistent with the spontaneous emergence
of local domains of identical particles with fractal boundaries and competing
interactions. Such direct evidence is for the first time exhibited for a
many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure
- …