233 research outputs found

    A 2nd generation cosmic axion experiment

    Full text link
    An experiment is described to detect dark matter axions trapped in the halo of our galaxy. Galactic axions are converted into microwave photons via the Primakoff effect in a static background field provided by a superconducting magnet. The photons are collected in a high Q microwave cavity and detected by a low noise receiver. The axion mass range accessible by this experiment is 1.3-13 micro-eV. The expected sensitivity will be roughly 50 times greater than achieved by previous experiments in this mass range. The assembly of the detector is well under way at LLNL and data taking will start in mid-1995.Comment: Postscript, 6 pages, 4 figures; submitted to proceedings of: XXXth Recontres de Moriond, 'Dark Matter in Cosmology", Villars-sur-Ollon, Switzerland, Jan 21-28, 199

    First results from a second generation galactic axion experiment

    Get PDF
    We report first results from a large scale search for dark matter axions. The experiment probes axion masses of 1.3-13 micro-eV at a sensitivity which is about 50 times higher than previous pilot experiments. We have already scanned part of this mass range at a sensitivity better than required to see at least one generic axion model, the KSVZ axion. Data taking at full sensitivity commenced in February 1996 and scanning the proposed mass range will require three years

    Semi-automatic 3D-volumetry of liver metastases from neuroendocrine tumors to improve combination therapy with 177Lu-DOTATOC and 90Y-DOTATOC

    Get PDF
    PURPOSEPatients with neuroendocrine tumors (NET) often present with disseminated liver metastases and can be treated with a number of different nuclides or nuclide combinations in peptide receptor radionuclide therapy (PRRT) depending on tumor load and lesion diameter. For quantification of disseminated liver lesions, semi-automatic lesion detection is helpful to determine tumor burden and tumor diameter in a time efficient manner. Here, we aimed to evaluate semi-automated measurement of total metastatic burden for therapy stratification.METHODSNineteen patients with liver metastasized NET underwent contrast-enhanced 1.5 T MRI using gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid. Liver metastases (n=1537) were segmented using Fraunhofer MEVIS Software for three-dimensional (3D) segmentation. All lesions were stratified according to longest 3D diameter >20 mm or ≤20 mm and relative contribution to tumor load was used for therapy stratification.RESULTSMean count of lesions ≤20 mm was 67.5 and mean count of lesions >20 mm was 13.4. However, mean contribution to total tumor volume of lesions ≤20 mm was 24%, while contribution of lesions >20 mm was 76%.CONCLUSIONSemi-automatic lesion analysis provides useful information about lesion distribution in predominantly liver metastasized NET patients prior to PRRT. As conventional manual lesion measurements are laborious, our study shows this new approach is more efficient and less operator-dependent and may prove to be useful in the decision making process selecting the best combination PRRT in each patient

    High precision branching ratio measurement for the superallowed β decay of [Formula Presented] A prerequisite for exacting tests of the standard model

    Get PDF
    Nonanalog Fermi and Gamow-Teller branches in the superallowed β decay of [Formula Presented] have been investigated using γ-ray and conversion-electron spectroscopy. Nine observed transitions, in conjunction with a recent shell model calculation, determine the branching ratio of the analog transition to be 99.5(1)%. The experimental upper limits for the Fermi decay to the [Formula Presented] and [Formula Presented] levels are in agreement with recent theoretical predictions. The [Formula Presented] value for the [Formula Presented] β decay is predicted to be 10405(9) keV. © 2003 The American Physical Society
    • …
    corecore