27 research outputs found
Stable Mutated tau441 Transfected SH-SY5Y Cells as Screening Tool for Alzheimer’s Disease Drug Candidates
The role of hyperphosphorylation of the microtubule-associated protein tau in the pathological processes of several neurodegenerative diseases is becoming better understood. Consequently, development of new compounds capable of preventing tau hyperphosphorylation is an increasingly hot topic. For this reason, dependable in vitro and in vivo models that reflect tau hyperphosphorylation in human diseases are needed. In this study, we generated and validated an in vitro model appropriate to test potential curative and preventive compound effects on tau phosphorylation. For this purpose, a stably transfected SH-SY5Y cell line was constructed over-expressing mutant human tau441 (SH-SY5Y-TMHT441). Analyses of expression levels and tau phosphorylation status in untreated cells confirmed relevance to human diseases. Subsequently, the effect of different established kinase inhibitors on tau phosphorylation (e.g., residues Thr231, Thr181, and Ser396) was examined. It was shown with several methods including immunosorbent assays and mass spectrometry that the phosphorylation pattern of tau in SH-SY5Y-TMHT441 cells can be reliably modulated by these compounds, specifically targeting JNK, GSK-3, CDK1/5, and CK1. These four protein kinases are known to be involved in in vivo tau phosphorylation and are therefore authentic indicators for the suitability of this new cell culture model for tauopathies
Stimulation of salivary secretion in vivo by CFTR potentiators in Cftr(+/+) and Cftr(-/-) mice
International audiencePhysiologically, salivary secretion is controlled by cholinergic and adrenergic pathways but the role of ionic channels in this process is not yet clearly understood. In cystic fibrosis (CF), most exocrine glands failed to response to β-adrenergic agonists. Methods To determine the implication of CFTR in this process, we measured in vivo the salivary secretion of Cftr+/+ and Cftr−/− mice in the presence of 2 water-soluble benzo[c]quinolizinium derivatives; MPB-07 a potentiator of CFTR Cl− channel and MPB-05 an inactive analogue. We also used genistein and its vehicle ethanol to confirm the implication of CFTR in salivary secretion. Results We showed that subcutaneous injection of MPB-07 in the mice cheek enhanced in a dose dependent manner the isoprenaline-induced salivary secretion in Cftr+/+ but not in Cftr−/− mice. By contrast, MPB-05 did not activate the salivary secretion in Cftr+/+ mice. The CFTR activator genistein (50 μM) significantly potentiated the secretory response of Cftr+/+ mice whereas its vehicle, ethanol, had no effect. Conclusions These results show for the first time in vivo pharmacological stimulation of salivary secretion by a water-soluble CFTR potentiator, MPB-07 and by the isoflavone, ethanol-soluble genistein and suggest that this chloride channel plays an important role in salivary gland physiology
Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects
Cyclin-dependent kinases (CDKs) regulate the cell cycle, apoptosis, neuronal functions, transcription, and exocytosis. The observation of CDK deregulations in various pathological situations suggests that CDK inhibitors may have a therapeutic value. In this article, we report on the identification of 6-phenyl[5H]pyrrolo[2,3-b]pyrazines (aloisines) as a novel potent CDK inhibitory scaffold. A selectivity study performed on 26 kinases shows that aloisine A is highly selective for CDK1/cyclin B, CDK2/cyclin A-E, CDK5/p25, and GSK-3 alpha/beta; the two latter enzymes have been implicated in Alzheimer's disease. Kinetic studies, as well as the resolution of a CDK2-aloisine cocrystal structure, demonstrate that aloisines act by competitive inhibition of ATP binding to the catalytic subunit of the kinase. As observed with all inhibitors reported so far, aloisine interacts with the ATP-binding pocket through two hydrogen bonds with backbone nitrogen and oxygen atoms of Leu 83. Aloisine inhibits cell proliferation by arresting cells in both G1 and G2
Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation
We have designed and synthesized benzo[c]quinolizinium derivatives and evaluated their effects on the activity of G551D cystic fibrosis transmembrane conductance regulator (CFTR) expressed in Chinese hamster ovary and Fisher rat thyroid cells. We demonstrated, using iodide efflux, whole cell patch clamp, and short-circuit recordings, that 5-butyl-6-hydroxy-10-chlorobenzo[c]quinolizinium chloride (MPB-91) restored the activity of G551D CFTR (EC(50) = 85 microM) and activated CFTR in Calu-3 cells (EC(50) = 47 microM). MPB-91 has no effect on the ATPase activity of wild-type and G551D NBD1/R/GST fusion proteins or on the ATPase, GTPase, and adenylate kinase activities of purified NBD2. The activation of CFTR by MPB-91 is independent of phosphorylation because 1) kinase inhibitors have no effect and 2) the compound still activated CFTR having 10 mutated protein kinase A sites (10SA-CFTR). The new pharmacological agent MPB-91 may be an important candidate drug to ameliorate the ion transport defect associated with CF and to point out a new pathway to modulate CFTR activity
Correction of delF508-CFTR activity with benzo(c)quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells
A number of genetic diseases, including cystic fibrosis, have been identified as disorders of protein trafficking associated with retention of mutant protein within the endoplasmic reticulum. In the presence of the benzo(c)quinolizinium drugs, MPB-07 and its congener MPB-91, we show the activation of cystic fibrosis transmembrane conductance regulator (CFTR) delF508 channels in IB3-1 human cells, which express endogenous levels of delF508-CFTR. These drugs were without effect on the Ca(2+)-activated Cl- transport, whereas the swelling-activated Cl- transport was found altered in MPB-treated cells. Immunoprecipitation and in vitro phosphorylation shows a 20% increase of the band C form of delF508 after MPB treatment. We then investigated the effect of these drugs on the extent of mislocalisation of delF508-CFTR in native airway cells from cystic fibrosis patients. We first showed that delF508 CFTR was characteristically restricted to an endoplasmic reticulum location in approximately 80% of untreated cells from CF patients homozygous for the delF508-CFTR mutation. By contrast, 60-70% of cells from non-CF patients showed wild-type CFTR in an apical location. MPB-07 treatment caused dramatic relocation of delF508-CFTR to the apical region such that the majority of delF508/delF508 CF cells showed a similar CFTR location to that of wild-type. MPB-07 had no apparent effect on the distribution of wild-type CFTR, the apical membrane protein CD59 or the ER membrane Ca(2+),Mg-ATPase. We also showed a similar pharmacological effect in nasal cells freshly isolated from a delF508/G551D CF patient. The results demonstrate selective redirection of a mutant membrane protein using cell-permeant small molecules of the benzo(c)quinolizinium family and provide a major advance towards development of a targetted drug treatment for cystic fibrosis and other disorders of protein trafficking
Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells
The pharmacological activation of the cystic fibrosis gene protein cystic fibrosis transmembrane conductance regulator (CFTR) was studied in human airway epithelial Calu-3 cells, which express a high level of CFTR protein as assessed by Western blot and in vitro phosphorylation. Immunolocalization shows that CFTR is located in the apical membrane. We performed iodide efflux, whole cell patch-clamp, and short-circuit recordings to demonstrate that the novel synthesized xanthine derivative 3, 7-dimethyl-1-isobutylxanthine (X-33) is an activator of the CFTR channel in Calu-3 cells. Whole cell current activated by X-33 or IBMX is linear, inhibited by glibenclamide and diphenylamine-2-carboxylate but not by DIDS or TS-TM calix[4]arene. Intracellular cAMP was not affected by X-33. An outwardly rectifying Cl(-) current was recorded in the absence of cAMP and X-33 stimulation, inhibited by DIDS and TS-TM calix[4]arene. With the use of short-circuit recordings, X-33 and IBMX were able to stimulate a large concentration-dependent CFTR transport that was blocked by glibenclamide but not by DIDS. Our results show that manipulating the chemical structure of xanthine derivatives offers an opportunity to identify further specific activators of CFTR in airway cells