1,881 research outputs found

    On the superfluidity of classical liquid in nanotubes

    Full text link
    In 2001, the author proposed the ultra second quantization method. The ultra second quantization of the Schr\"odinger equation, as well as its ordinary second quantization, is a representation of the N-particle Schr\"odinger equation, and this means that basically the ultra second quantization of the equation is the same as the original N-particle equation: they coincide in 3N-dimensional space. We consider a short action pairwise potential V(x_i -x_j). This means that as the number of particles tends to infinity, NN\to\infty, interaction is possible for only a finite number of particles. Therefore, the potential depends on N in the following way: VN=V((xixj)N1/3)V_N=V((x_i-x_j)N^{1/3}). If V(y) is finite with support ΩV\Omega_V, then as NN\to\infty the support engulfs a finite number of particles, and this number does not depend on N. As a result, it turns out that the superfluidity occurs for velocities less than min(λcrit,h2mR)\min(\lambda_{\text{crit}}, \frac{h}{2mR}), where λcrit\lambda_{\text{crit}} is the critical Landau velocity and R is the radius of the nanotube.Comment: Latex, 20p. The text is presented for the International Workshop "Idempotent and tropical mathematics and problems of mathematical physics", Independent University of Moscow, Moscow, August 25--30, 2007 and to be published in the Russian Journal of Mathematical Physics, 2007, vol. 15, #

    Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts

    Full text link
    We show that G\"odel's negative results concerning arithmetic, which date back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites paradox") pose the questions of the use of fuzzy sets and of the effect of a measuring device on the experiment. The consideration of these facts led, in thermodynamics, to a new one-parameter family of ideal gases. In turn, this leads to a new approach to probability theory (including the new notion of independent events). As applied to economics, this gives the correction, based on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are added. arXiv admin note: significant text overlap with arXiv:1111.610

    q-Legendre Transformation: Partition Functions and Quantization of the Boltzmann Constant

    Full text link
    In this paper we construct a q-analogue of the Legendre transformation, where q is a matrix of formal variables defining the phase space braidings between the coordinates and momenta (the extensive and intensive thermodynamic observables). Our approach is based on an analogy between the semiclassical wave functions in quantum mechanics and the quasithermodynamic partition functions in statistical physics. The basic idea is to go from the q-Hamilton-Jacobi equation in mechanics to the q-Legendre transformation in thermodynamics. It is shown, that this requires a non-commutative analogue of the Planck-Boltzmann constants (hbar and k_B) to be introduced back into the classical formulae. Being applied to statistical physics, this naturally leads to an idea to go further and to replace the Boltzmann constant with an infinite collection of generators of the so-called epoch\'e (bracketing) algebra. The latter is an infinite dimensional noncommutative algebra recently introduced in our previous work, which can be perceived as an infinite sequence of "deformations of deformations" of the Weyl algebra. The generators mentioned are naturally indexed by planar binary leaf-labelled trees in such a way, that the trees with a single leaf correspond to the observables of the limiting thermodynamic system

    Peculiarities of dynamics of Dirac fermions associated with zero-mass lines

    Get PDF
    Zero-mass lines result in appearance of linear dispersion modes for Dirac fermions. These modes play an important role in various physical systems. However, a Dirac fermion may not precisely follow a single zero-mass line, due to either tunneling between different lines or centrifugal forces. Being shifted from a zero-mass line the Dirac fermion acquires mass which can substantially influence its expected "massless" behavior. In the paper we calculate the energy gap caused by the tunneling between two zero-mass lines and show that its opening leads to the delocalization of linear dispersion modes. The adiabatic bending of a zero-mass line gives rise to geometric phases. These are the Berry phase, locally associated with a curvature, and a new phase resulting from the mass square asymmetry in the vicinity of a zero-mass line.Comment: 6 pages, 4 figures. In the second version some references were added and minor changes were made in the introductio

    Mathematical Conception of "Phenomenological" Equilibrium Thermodynamics

    Full text link
    In the paper, the principal aspects of the mathematical theory of equilibrium thermodynamics are distinguished. It is proved that the points of degeneration of a Bose gas of fractal dimension in the momentum space coincide with critical points or real gases, whereas the jumps of critical indices and the Maxwell rule are related to the tunnel generalization of thermodynamics. Semiclassical methods are considered for the tunnel generalization of thermodynamics and also for the second and ultrasecond quantization (operators of creation and annihilation of pairs). To every pure gas there corresponds a new critical point of the limit negative pressure below which the liquid passes to a dispersed state (a foam). Relations for critical points of a homogeneous mixture of pure gases are given in dependence on the concentration of gases.Comment: 37 pages, 9 figure, more precise explanations, more references. arXiv admin note: substantial text overlap with arXiv:1202.525

    Conductance of a Mott Quantum Wire

    Full text link
    We consider transport through a one-dimensional conductor subject to an external periodic potential and connected to non-interacting leads (a "Mott quantum wire"). For the case of a strong periodic potential, the conductance is shown to jump from zero, for the chemical potential lying within the Mott-Hubbard gap, to the non-interacting value of 2e^2/h, as soon as the chemical potential crosses the gap edge. This behavior is strikingly different from that of an optical conductivity, which varies continuously with the carrier concentration. For the case of a weak potential, the perturbative correction to the conductance due to Umklapp scattering is absent away from half-filling.Comment: 4 pages, RevTex, 1 ps figure included; published versio

    Universality in scattering by large-scale potential fluctuations in two-dimensional conductors

    Full text link
    We study electron propagation through a random array of rare, opaque and large (compared the de Broglie wavelength of electrons) scatterers. It is shown that for any convex scatterer the ratio of the transport to quantum lifetimes \eta=\tau_{tr}/\tau_{tot}$ does not depend on the shape of the scatterer but only on whether scattering is specular or diffuse and on the spatial dimensionality (D). In particular, for specular scattering, \eta is a universal constant determined only by the dimensionality of the system: \eta = 2 for D = 3 and \eta = 3/2 for D = 2. The crossover between classical and quantum regimes of scattering is discussed.Comment: 4 pages, 3 figures, submitted to PR

    Initial Conditions for Semiclassical Field Theory

    Get PDF
    Semiclassical approximation based on extracting a c-number classical component from quantum field is widely used in the quantum field theory. Semiclassical states are considered then as Gaussian wave packets in the functional Schrodinger representation and as Gaussian vectors in the Fock representation. We consider the problem of divergences and renormalization in the semiclassical field theory in the Hamiltonian formulation. Although divergences in quantum field theory are usually associated with loop Feynman graphs, divergences in the Hamiltonian approach may arise even at the tree level. For example, formally calculated probability of pair creation in the leading order of the semiclassical expansion may be divergent. This observation was interpretted as an argumentation for considering non-unitary evolution transformations, as well as non-equivalent representations of canonical commutation relations at different time moments. However, we show that this difficulty can be overcomed without the assumption about non-unitary evolution. We consider first the Schrodinger equation for the regularized field theory with ultraviolet and infrared cutoffs. We study the problem of making a limit to the local theory. To consider such a limit, one should impose not only the requirement on the counterterms entering to the quantum Hamiltonian but also the requirement on the initial state in the theory with cutoffs. We find such a requirement in the leading order of the semiclassical expansion and show that it is invariant under time evolution. This requirement is also presented as a condition on the quadratic form entering to the Gaussian state.Comment: 20 pages, Plain TeX, one postscript figur

    Semiclassical Estimates of Electromagnetic Casimir Self-Energies of Spherical and Cylindrical Metallic Shells

    Full text link
    The leading semiclassical estimates of the electromagnetic Casimir stresses on a spherical and a cylindrical metallic shell are within 1% of the field theoretical values. The electromagnetic Casimir energy for both geometries is given by two decoupled massless scalars that satisfy conformally covariant boundary conditions. Surface contributions vanish for smooth metallic boundaries and the finite electromagnetic Casimir energy in leading semiclassical approximation is due to quadratic fluctuations about periodic rays in the interior of the cavity only. Semiclassically the non-vanishing Casimir energy of a metallic cylindrical shell is almost entirely due to Fresnel diffraction.Comment: 12 pages, 2 figure

    Comments on the Sign and Other Aspects of Semiclassical Casimir Energies

    Full text link
    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The so defined semiclassical Casimir energy coincides with that obtained using zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to non-universal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary, its sign can in favorable cases be inferred without explicit calculation of the Casimir energy.Comment: 39 pages, no figures, references added, some correction
    corecore