44,376 research outputs found

    Massive Gravity Simplified: A Quadratic Action

    Get PDF
    We present a simplified formulation of massive gravity where the Higgs fields have quadratic kinetic term. This new formulation allows us to prove in a very explicit way that all massive gravity theories considered so far inevitably have Boulware-Deser ghost in non-trivial fluctuations of background metric.Comment: 8 pages, paragraph added proving that Bianchi identity does not imply vanishing of linearized curvatur

    Investigation of Grid-Connected and Islanded Direct Matrix Converter for Renewable Microgrid Applications with Model Predictive Control

    Full text link
    © 2018 IEEE. The direct matrix converter has been proposed for many potential applications. However, it remains unexplored within the context of microgrids and distributed generation. This paper investigates the application of the direct matrix converter to these areas. Both the grid-connected and islanded operation modes are explored. Model predictive control is employed to achieve flexible active and reactive power regulation in the grid-connected mode, and stable sinusoidal voltage control in the islanded mode. It is also used to achieve grid voltage synchronization prior to grid connection. Simulation and experimental results verify the feasibility and effectiveness of the direct matrix converter when used in grid-connected and islanded microgrids. When used in the matrix converter-connected microgrid, model predictive control is effective in regulating the voltage and the power exchange with the grid

    Sequential model predictive control of direct matrix converter without weighting factors

    Full text link
    © 2018 IEEE. The direct matrix converter (MC) is a promising converter that performs direct AC-to-AC conversion. Model predictive control (MPC) is a simple and powerful control strategy for power electronic converters including the MC. However, weighting factor design and heavy computational burden impose significant challenges for this control strategy. This paper investigates the sequential MPC (SMPC) for a three-phase direct MC. In this control strategy, each control objective has an individual cost function and these cost functions are evaluated sequentially based on priority. The complex weighting factor design process is not required and the computational burden can be reduced. In addition, specifying the priority for control objectives can be achieved. A comparative simulation study with standard MPC is carried out in Matlab/Simulink. Control performance is compared to the standard MPC and found to be comparable. Simulation results verify the effectiveness of the proposed strategy

    Predictive Voltage Control of Direct Matrix Converters with Improved Output Voltage for Renewable Distributed Generation

    Full text link
    © 2013 IEEE. This paper proposes a predictive voltage control strategy for a direct matrix converter used in a renewable energy distributed generation (DG) system. A direct matrix converter with LC filters is controlled in order to work as a stable voltage supply for loads. This is especially relevant for the stand-alone operation of a renewable DG where a stable sinusoidal voltage, with desired amplitude and frequency under various load conditions, is the main control objective. The model predictive control is employed to regulate the matrix converter so that it produces stable sinusoidal voltages for different loads. With predictive control, many other control objectives, e.g., input power factor, common-mode voltage, and switching frequency, can be achieved depending on the application. To reduce the number of required measurements and sensors, this paper utilizes observers and makes the use of the switch matrices. In addition, the voltage transfer ratio can be improved with the proposed strategy. The controller is tested under various conditions including intermittent disturbance, nonlinear loads, and unbalanced loads. The proposed controller is effective, simple, and easy to implement. The simulation and experimental results verify the effectiveness of the proposed scheme and control strategy. This proposed scheme can be potentially used in microgrid applications

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape

    A model of dengue fever

    Get PDF
    BACKGROUND: Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Moreover, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous. METHODS: The present paper deals with a succession of two epidemics caused by two different viruses. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the human and the mosquito populations. RESULTS: Stability of the equilibrium points is given and a simulation is carried out with different values of the parameters. The epidemic dynamics is discussed and illustration is given by figures for different values of the parameters. CONCLUSION: The proposed model allows for better understanding of the disease dynamics. Environment and vaccination strategies are discussed especially in the case of the succession of two epidemics with two different viruses

    Accurate and linear time pose estimation from points and lines

    Get PDF
    The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms, the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft

    Muscle Fatigue Analysis Using OpenSim

    Full text link
    In this research, attempts are made to conduct concrete muscle fatigue analysis of arbitrary motions on OpenSim, a digital human modeling platform. A plug-in is written on the base of a muscle fatigue model, which makes it possible to calculate the decline of force-output capability of each muscle along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model. Motion data is obtained by motion capturing during an arbitrary running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the force-output capability of these muscles reduced to 60%-70% after 10 minutes' running, on a general basis. Erector spinae, which loses 39.2% of its maximal capability, is found to be more fatigue-exposed than the others. The influence of subject attributes (fatigability) is evaluated and discussed

    On Counting Triangles through Edge Sampling in Large Dynamic Graphs

    Full text link
    Traditional frameworks for dynamic graphs have relied on processing only the stream of edges added into or deleted from an evolving graph, but not any additional related information such as the degrees or neighbor lists of nodes incident to the edges. In this paper, we propose a new edge sampling framework for big-graph analytics in dynamic graphs which enhances the traditional model by enabling the use of additional related information. To demonstrate the advantages of this framework, we present a new sampling algorithm, called Edge Sample and Discard (ESD). It generates an unbiased estimate of the total number of triangles, which can be continuously updated in response to both edge additions and deletions. We provide a comparative analysis of the performance of ESD against two current state-of-the-art algorithms in terms of accuracy and complexity. The results of the experiments performed on real graphs show that, with the help of the neighborhood information of the sampled edges, the accuracy achieved by our algorithm is substantially better. We also characterize the impact of properties of the graph on the performance of our algorithm by testing on several Barabasi-Albert graphs.Comment: A short version of this article appeared in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2017
    • …
    corecore