42,941 research outputs found

    Relationship between single-particle excitation and spin excitation at the Mott Transition

    Full text link
    An intuitive interpretation of the relationship between the dispersion relation of the single-particle excitation in a metal and that of the spin excitation in a Mott insulator is presented, based on the results for the one- and two-dimensional Hubbard models obtained by using the Bethe ansatz, dynamical density-matrix renormalization group method, and cluster perturbation theory. The dispersion relation of the spin excitation in the Mott insulator is naturally constructed from that of the single-particle excitation in the zero-doping limit in both one- and two-dimensional Hubbard models, which allows us to interpret the doping-induced states as the states that lose charge character toward the Mott transition. The characteristic feature of the Mott transition is contrasted with the feature of a Fermi liquid and that of the transition between a band insulator and a metal.Comment: 6 pages, 2 figures, to appear in JPS Conf. Pro

    Trans-Magnetosonic Accretion in a Black Hole Magnetosphere

    Full text link
    We present the critical conditions for hot trans-fast magnetohydrodynamical (MHD) flows in a stationary and axisymmetric black-hole magnetosphere. To accrete onto the black hole, the MHD flow injected from a plasma source with low velocity must pass through the fast magnetosonic point after passing through the ``inner'' or ``outer'' Alfven point. We find that a trans-fast MHD accretion solution related to the inner Alfven point is invalid when the hydrodynamical effects on the MHD flow dominate at the magnetosonic point, while the other accretion solution related to the outer Alfven point is invalid when the total angular momentum of the MHD flow is seriously large. When both regimes of the accretion solutions are valid in the black hole magnetosphere, we can expect the transition between the two regimes. The variety of these solutions would be important in many highly energetic astrophysical situations.Comment: 27 pages, 12 figures, accepted to Ap

    Mesoscopic conductance fluctuations in a coupled quantum dot system

    Full text link
    We study the transport properties of an Aharonov-Bohm ring containing two quantum dots. One of the dots has well-separated resonant levels, while the other is chaotic and is treated by random matrix theory. We find that the conductance through the ring is significantly affected by mesoscopic fluctuations. The Breit-Wigner resonant peak is changed to an antiresonance by increasing the ratio of the level broadening to the mean level spacing of the random dot. The asymmetric Fano form turns into a symmetric one and the resonant peak can be controlled by magnetic flux. The conductance distribution function clearly shows the influence of strong fluctuations.Comment: 4 pages, 4 figures; revised for publicatio

    Biquadratic antisymmetric exchange and the magnetic phase diagram of magnetoelectric CuFeO2_2

    Full text link
    Biquadratic {\it antisymmetric} exchange terms of the form −[Cijeijα(si×sj)z]2 - [C_{ij} e^{\alpha}_{ij}({\bf s}_i\times{\bf s}_j)_z]^2, where eij{\bf e}_{ij} is the unit vector connecting sites ii and jj and α=x,y\alpha = x,y, due partially to magnetoelectric coupling effects, are shown to be responsible for the spin-flop helical phase in CuFeO2_2 at low magnetic field and temperature. Usual biquadratic {\it symmetric} exchange, likely due to magnetoelastic coupling, is found to support the stability of axial magnetic states at higher fields in this nearly-Heisenberg like stacked triangular antiferromagnet. A model Hamiltonian which also includes substantial interplane and higher-neighbor intraplane exchange interactions, reproduces the unique series of observed commensurate and incommensurate periodicity phases with increasing applied magnetic field in this highly frustrated system. The magnetic field-temperature phase diagram is discussed in terms of a Landau-type free energy.Comment: 7 pages, 9 figure

    Pre-K-Edge Structure on Anomalous X-Ray Scattering in LaMnO3

    Full text link
    We study the pre-K-edge structure of the resonant X-ray scattering for forbidden reflections (anomalous scattering) in LaMnO3, using the band calculation based on the local density approximation. We find a two-peak structure with an intensity approximately 1/100 of that of the main peak. This originates from a mixing of 4p states of Mn to 3d states of neighboring Mn sites. The effect is enhanced by an interference with the tail of the main peak. The effect of the quadrupole transition is found to be one order of magnitude smaller than that of the dipole transition, modifying slightly the azimuthal-angle dependence.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Spectral Properties near the Mott Transition in the One-Dimensional Hubbard Model

    Full text link
    Single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model are investigated by using the dynamical density-matrix renormalization group method and the Bethe ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin exchange J) in the weak (strong) interaction regime caused by infinitesimal doping.Comment: 4 pages, 2 figure

    Quantum Spin Chains and Riemann Zeta Function with Odd Arguments

    Get PDF
    Riemann zeta function is an important object of number theory. It was also used for description of disordered systems in statistical mechanics. We show that Riemann zeta function is also useful for the description of integrable model. We study XXX Heisenberg spin 1/2 anti-ferromagnet. We evaluate a probability of formation of a ferromagnetic string in the anti-ferromagnetic ground state in thermodynamics limit. We prove that for short strings the probability can be expressed in terms of Riemann zeta function with odd arguments.Comment: LaTeX, 7 page

    Magnetic susceptibility and low-temperature specific-heat of integrable 1-D Hubbard model under open-boundary conditions

    Full text link
    The magnetic susceptibility and the low-temperature specific heat of the 1-dimensional Hubbard model under the integrable open-boundary conditions are discussed through the Bethe ansatz with the string hypothesis. The contributions of the boundary fields to both the susceptibility and the specific heat are obtained, and their exact expressions are analytically derived.Comment: 14 pages, Latex, No figures, to appear in J. Phys. A: Gen. & Mat

    Order-disorder transition in nanoscopic semiconductor quantum rings

    Get PDF
    Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between spin ordered and disordered Wigner crystals. Due to the small number of particles the transition extends over a broad temperature range and is clearly identifiable from the electron pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small systems see http://www.smallsystems.d

    Paired state in an integrable spin-1 boson model

    Full text link
    An exactly solvable model describing the low density limit of the spin-1 bosons in a one-dimensional optical lattice is proposed. The exact Bethe ansatz solution shows that the low energy physics of this system is described by a quantum liquid of spin singlet bound pairs. Motivated by the exact results, a mean-field approach to the corresponding three-dimensional system is carried out. Condensation of singlet pairs and coexistence with ordinary Bose-Einstein condensation are predicted.Comment: 6 pages, 1 figure, Revised versio
    • …
    corecore