1 research outputs found

    Evidence of Two Distinct Dynamic Critical Exponents in Connection with Vortex Physics

    Full text link
    The dynamic critical exponent zz is determined from numerical simulations for the three-dimensional (3D) lattice Coulomb gas (LCG) and the 3D XY models with relaxational dynamics. It is suggested that the dynamics is characterized by two distinct dynamic critical indices z0z_0 and zz related to the divergence of the relaxation time τ\tau by τξz0\tau\propto \xi^{z_0} and τkz\tau\propto k^{-z}, where ξ\xi is the correlation length and kk the wavevector. The values determined are z01.5z_0\approx 1.5 and z1z\approx 1 for the 3D LCG and z01.5z_0\approx 1.5 and z2z\approx 2 for the 3D XY model. It is argued that the nonlinear IVIV exponent relates to z0z_0, whereas the usual Hohenberg-Halperin classification relates to zz. Possible implications for the interpretation of experiments are pointed out. Comparisons with other existing results are discussed.Comment: to appear in PR
    corecore