27 research outputs found

    Zirconium and titanium complexes supported by tridentate LX2 ligands having two phenolates linked to furan, thiophene, and pyridine donors: precatalysts for propylene polymerization and oligomerization

    Get PDF
    Zirconium and titanium complexes with tridentate bis(phenolate)-donor (donor = pyridine, furan and thiophene) ligands have been prepared and investigated for applications in propylene polymerization. The ligand framework has two X-type phenolates connected to the flat heterocyclic L-type donor at the 2,6- or 2.5- positions via direct ring-ring (sp^2-sp^2)linkages. The zirconium and titanium dibenzyl complexes have been prepared by treatment of the neutral bis(phenol)-donor ligands with M(CH_2Ph)_4 (M = Ti, Zr) with loss of 2 equiv of toluene. Titanium complexes with bis(phenolate)pyridine and -furan ligands and zirconium complexes with bis(phenolate)pyridine and -thiophene ligands have been characterized by single-crystal X-ray diffraction. The solid-state structures of the bis(benzyl)titanium complexes are roughly C_2 symmetric, while the zirconium derivatives display C_s and C^1 symmetry. The bis(phenolate)pyridine titanium complexes are structurally affected by the size of the substituents substituents (CMe_3 or CEt_3) ortho to the oxygens, the larger group leading to a larger C_2 distortion. Both titanium and zirconium dibenzyl complexes were found to be catalyst precursors for the polymerization of propylene upon activation with methylaluminoxane (MAO). The activities observed for the zirconium complexes are particularly notable, exceeding 10^6 g polypropylene/mol Zr center dot h in some cases. The bis(phenolate)pyridine titanium analogues are about 10^3 times less active, but generate polymers of higher molecular weight. When activated with MAO, the titanium bis(phenolate)furan and bis(phenolate)thiophene systems were found to promote propylene oligomerization

    Synthesis and Characterization of Ruthenium and Rhenium Nucleosides

    Get PDF
    We report the synthesis and characterization of new ruthenium and rhenium nucleosides [Ru(tolyl-acac)_2(IMPy)-T] (tolyl-acac = di(p-methylbenzonatemethane), IMPy = 2‘-iminomethylpyridine, T = thymidine) (5) and [Re(CO)_3(IMPy)-T]Cl (9), respectively. Structural analysis of 9 shows that the incorporation of this metal complex causes minimal perturbation to the sugar backbone and the nucleobase. Eletrochemical (5, E_(1/2) = 0.265 V vs NHE; 9, E_(1/2) = 1.67 V vs NHE), absorption (5, λ_(max) = 600, 486 nm; 9, λ_(max) = 388 nm), and emission (9, λ_(max) = 770 nm, π = 17 ns) data indicate that 5 and 9 are suitable probes for DNA-mediated ground-state electron-transfer studies. The separation and characterization of diastereoisomers of 5 and bipyridyl-based ruthenium nucleoside [Ru(bpy)_2(IMPy)-T]^(2+) (7) are reported

    A revision of the structure of (bipyridyl- N

    Full text link

    Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature

    Get PDF
    The remarkable adaptive strategies of insects to extreme environments are linked to the biochemical compounds in their body fluids. Trehalose, a versatile sugar molecule, can accumulate to high levels in freeze-tolerant and freeze-avoiding insects, functioning as a cryoprotectant and a supercooling agent. Antifreeze proteins (AFPs), known to protect organisms from freezing by lowering the freezing temperature and deferring the growth of ice, are present at high levels in some freeze-avoiding insects in winter, and yet, paradoxically are found in some freeze-tolerant insects. Here, we report a previously unidentified role for AFPs in effectively inhibiting trehalose precipitation in the hemolymph (or blood) of overwintering beetle larvae. We determine the trehalose level (29.6 ± 0.6 mg/mL) in the larval hemolymph of a beetle, Dendroides canadensis, and demonstrate that the hemolymph AFPs are crucial for inhibiting trehalose crystallization, whereas the presence of trehalose also enhances the antifreeze activity of AFPs. To dissect the molecular mechanism, we examine the molecular recognition between AFP and trehalose crystal interfaces using molecular dynamics simulations. The theory corroborates the experiments and shows preferential strong binding of the AFP to the fast growing surfaces of the sugar crystal. This newly uncovered role for AFPs may help explain the long-speculated role of AFPs in freeze-tolerant species. We propose that the presence of high levels of molecules important for survival but prone to precipitation in poikilotherms (their body temperature can vary considerably) needs a companion mechanism to prevent the precipitation and here present, to our knowledge, the first example. Such a combination of trehalose and AFPs also provides a novel approach for cold protection and for trehalose crystallization inhibition in industrial applications
    corecore