Supporting Information

Wen et al. 10.1073/pnas.1601519113

SI Materials and Methods

MD simulations of the DAFP-1 model and the X-ray structure of TmAFP (1.4-Å resolution) (52) were performed. The MD simulations were carried out using the NAMD 2.5 program (55) with the AMBER99 force field (56). The DAFP-1 model and the X-ray structure of TmAFP were neutralized by adding one and two Na⁺ counter ions and solvated in a TIP3P (57) water box with an 18-Å buffer distance between the wall of the water box and the nearest solute atom, respectively. After initial energy minimization and heating, each system was then simulated for 10 ns of NPT dynamics at 1 bar and 277 K. The coordinates were saved every 1 ps. The trajectory files were analyzed using the visual

molecular dynamics (VMD) program (58). The RMSD values of the backbone atoms (N, C α , and C) were calculated for both DAFP-1 and TmAFP relative to their initial coordinates in the MD simulations, and the calculated RMSD values are plotted as a function of time (Fig. S3). The backbone RMSD values range from 0.3 to 0.9 Å for both DAFP-1 and TmAFP (Fig. S3), reflecting inherent protein structural flexibility and experimental resolution limits. Moreover, the structure of the DAFP-1 model and the average structure of TmAFP in the simulation are compared by aligning the C α coordinates of the two structures (Fig. S4). The resulting RMSD is small (0.5 Å), suggesting a high backbone structural similarity between the two structures.

Fig. S1. Micrographs of trehalose dihydrate crystals. (*A*–*C*) Trehalose dihydrate crystals achieved in the absence and presence of additives. The trehalose dihydrate crystals obtained in the presence of denatured DAFP-1 at 1 mg/mL (*A*), in the presence of DAFP-1 at 0.1 mg/mL (*B*), and in the presence of DAFP-1 at 0.8 mg/mL (*C*). (Scale bars, 500 µm.)

Fig. S2. Size distributions of trehalose dihydrate crystals in the absence and presence of varying concentrations of DAFP-1. Crystal size distributions of the achieved trehalose dihydrate crystals (*A*) in the absence of additives, (*B*) in the presence of the denatured DAFP-1 at 1.1 mg/mL (as a control), (*C*) in the presence of DAFP-1 at 0.04 mg/mL, (*D*) in the presence of DAFP-1 at 0.1 mg/mL, and (*E*) in the presence of DAFP-1 at 0.8 mg/mL. Counting errors from five experiments are represented by the error bars.

Fig. S3. Structural alignment of the DAFP-1 and the denatured DAFP-1 models. All of the disulfide bonds were reduced in the denatured DAFP-1 model. Structures are aligned based on backbone atoms and shown in a cartoon representation. Side view (*A*) and top view (*B*) of aligned DAFP-1 (blue) and the denatured DAFP-1 (red).

Fig. S4. RMSDs of all backbone atoms of DAFP-1 (red) and TmAFP (blue) as a function of simulation time. The RMSDs were calculated with respect to the initial coordinates in the simulations.

Fig. S5. Structural alignment of the DAFP-1 model and the average TmAFP structure from the MD simulation. The structures are aligned based on the backbone atoms and shown in a cartoon representation. The aligned DAFP-1 model and the TmAFP are shown in pink and green, respectively.

Crystallographic variable	Data
Formula	C ₁₂ H ₂₂ O ₁₁ ·2H ₂ O
Formula weight	378.33
Data collection temperature	100 K
Crystal system	Orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (#19)
Unit cell dimensions	
a, b, c (Å)	7.5341 (4), 12.1764 (7), 17.7886 (10)
α, β, γ (°)	90°, 90°, 90°
Volume	1,631.89 (16) Å ³
Z	4
Density (calculated)	1.540 g/cm ³
Reflections > $2\sigma(I)$	15,934
Average σ (I)/(net I)	0.0299
Data/restraints/parameters	17,593/0/330
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0312, wR_2 = 0.0596$
R indices (all data)	$R_1 = 0.0379, wR_2 = 0.0602$

T.I.I. C4	C	A		191. A
Table S1.	Crystallographic	data tor	trenalose	ainyarate

Only the data for the crystals obtained in the presence of DAFP-1 are listed, confirming that the obtained crystals are trehalose dihydrate crystals.

<

Table S2. Surface energies for (-110) and (0-11) surfaces of trehalose dihydrate and the relative binding energies of DAFP-1 to these surfaces

Surface	E _{surf} (mJ/m²)	System	ΔΔE _{bind} (kcal/mol)	E′ _{surf} (mJ/m²)
(–110)	3,086	DAFP-1 + (-110)	-116	1,825
(0–11)	2,976	DAFP-1 + (0-11)	-75	1,692

Table S3. Possible hydrogen bonding interactions between DAFP-1 and the crystalline surfaces of trehalose dihydrate (-110) and (0-11)

DAFP-1 + (–110)		DAFP-1 + (0–11)		
DAFP-1	(–110)	DAFP-1	(0–11)	
T3 O	TEL174 O14	T3 O	TEL258 O38	
T26 O	TEL239 O40	T16 O	TEL258 O40	
T29 O	WAT518 O	T51 O	TEL206 O38	
T39 O	TEL250 O28	T53 O	TEL242 O38	
T41 O	WAT518 O	R54 Nη2	TEL278 O40	
T51 O	TEL250 O16	Κ62 Ν ζ	TEL170 O38	
T51O	TEL250 O14	T63 O	TEL206 O40	
R54 Nη2	TEL170 O16	T65 O	TEL242 O40	
R54 Νε	TEL170 O16			
Κ62 Νζ	WAT669 O			
T63 O	TEL250 O16			
T65 O	WAT513 O			
T77 O	WAT510 O			

Other Supporting Information Files

Dataset S1 (XLSX) Dataset S2 (XLSX)

PNAS PNAS