41,006 research outputs found

    Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy

    Get PDF
    We report on the magnetic and structural properties of Ar and Mn implanted InAs epitaxial films grown on GaAs (100) by Molecular Beam Epitaxy (MBE) and the effect of Rapid Thermal Annealing (RTA) for 30 seconds at 750C. Channeling Particle Induced X- ray Emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are subsbtitutional in the In-site of the InAs lattice, like in a diluted magnetic semiconductor (DMS). All of these samples show diamagnetic behavior. But, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments were performed with As as implantation ion all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagnetic-like behavior in the Mn-InAs-RTA layer is not related to lattice disorder produce during implantation, but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns (XRD) and Rutherford Back Scattering (RBS) measurements evidence the segregation of an oxygen deficient-MnO2 phase (nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be on the origin of room temperature ferromagnetic-like response observed.Comment: 16 pages, 5 figures. Acepted in J. Appl. Phy

    Core-crust transition pressure for relativistic slowly rotating neutron stars

    Get PDF
    We study the influence of core-\textit{crust} transition pressure changes on the general dynamical properties of neutron star configurations. First we study the matching conditions in core-\textit{crust} transition pressure region, where phase transitions in the equation of state causes energy density jumps. Then using a surface \textit{crust} approximation, we can construct configurations where the matter is described by the equation of state of the core of the star and the core-\textit{crust} transition pressure. We will consider neutron stars in the slow rotation limit, considering perturbation theory up to second order in the angular velocity so that the deformation of the star is also taken into account. The junction determines the parameters of the star such as total mass, angular and quadrupolar momentum.Comment: 4 pages, 1 figur

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter

    Integral field observations of the blue compact galaxy Haro14. Star formation and feedback in dwarf galaxies

    Full text link
    (Abridged) Low-luminosity, gas-rich blue compact galaxies (BCG) are ideal laboratories to investigate many aspects of the star formation in galaxies. We study the morphology, stellar content, kinematics, and the nebular excitation and ionization mechanism in the BCG Haro 14 by means of integral field observations with VIMOS in the VLT. From these data we build maps in continuum and in the brighter emission lines, produce line-ratio maps, and obtain the velocity and velocity dispersion fields. We also generate the integrated spectrum of the major HII regions and young stellar clusters identified in the maps to determine reliable physical parameters and oxygen abundances. We find as follows: i) the current star formation in Haro 14 is spatially extended with the major HII regions placed along a linear structure, elongated in the north-south direction, and in a horseshoe-like curvilinear feature that extends about 760 pc eastward; the continuum emission is more concentrated and peaks close to the galaxy center; ii) two different episodes of star formation are present: the recent starburst, with ages ≤\leq 6 Myrs and the intermediate-age clusters, with ages between 10 and 30 Myrs; these stellar components rest on a several Gyr old underlying host galaxy; iii) the Hα\alpha/Hβ\beta pattern is inhomogeneous, with excess color values varying from E(B-V)=0.04 up to E(B-V)=1.09; iv) shocks play a significant role in the galaxy; and v) the velocity field displays a complicated pattern with regions of material moving toward us in the east and north galaxy areas. The morphology of Haro 14, its irregular velocity field, and the presence of shocks speak in favor of a scenario of triggered star formation. Ages of the knots are consistent with the ongoing burst being triggered by the collective action of stellar winds and supernovae originated in the central clusters.Comment: 18 pages, 17 figures. Accepted for publication in A&

    Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Full text link
    (Abridged) Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy with VIMOS at the Very Large Telescope to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. We found that Tololo 1937-423 is currently undergoing an extended starburst, with nine major HαH\alpha clumps. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reaches its maximum roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis. The morphology of the galaxy and the two different episodes of SF suggest a scenario of triggered (induced by supernova shock waves) SF acting in Tololo 1937-423. The inferred ages for the different SF episodes (~13-80 Myr for the central post-starburst and 5-7 Myr for the ongoing SF) are consistent with triggered SF, with the most recent SF episode caused by the collective effect of stellar winds and supernova explosions from the central post-starburst. The velocity dispersion pattern, with higher velocity dispersions found at the edges of the SF regions, and shocked regions in the galaxy, also favor this scenario.Comment: 16 pages, 18 figures. Accepted for publication in A&
    • …
    corecore