338 research outputs found

    Interplay between elastic fields due to gravity and a partial dislocation for a hard-sphere crystal coherently grown under gravity: driving force for defect disappearance

    Full text link
    We previously observed that an intrinsic staking fault shrunk through a glide of a Shockley partial dislocation terminating its lower end in a hard-sphere crystal under gravity coherently grown in by Monte Carlo simulations [Mori et al., Molec. Phys. 105, 1377 (2007)]; it was an answer to a one-decade long standing question why the stacking disorder in colloidal crystals reduced under gravity [Zhu et al., Nature 387, 883 (1997)]. Here, we present an elastic energy calculation; in addition to the self-energy of the partial dislocation [Mori et al., Prog. Theor. Phys. Suppl. 178, 33 (2009)] we calculate the cross-coupling term between elastic field due to gravity and that due to a Shockley partial dislocation. The cross term is a increasing function of the linear dimension R over which the elastic field expands, showing that a driving force arises for the partial dislocation moving toward the upper boundary of a grain.Comment: 8pages, 4figures, to be published in Molecular Physic

    Thixotropy in macroscopic suspensions of spheres

    Get PDF
    An experimental study of the viscosity of a macroscopic suspension, i.e. a suspension for which Brownian motion can be neglected, under steady shear is presented. The suspension is prepared with a high packing fraction and is density-matched in a Newtonian carrier fluid. The viscosity of the suspension depends on the shear rate and the time of shearing. It is shown for the first time that a macroscopic suspension shows thixotropic viscosity, i.e. shear-thinning with a long relaxation time as a unique function of shear. The relaxation times show a systematic decrease with increasing shear rate. These relaxation times are larger when decreasing the shear rates, compared to those observed after increasing the shear. The time scales involved are about 10000 times larger than the viscous time scale and about 1000 times smaller than the thermodynamic time scale. The structure of the suspension at the outer cylinder of a viscometer is monitored with a camera, showing the formation of a hexagonal structure. The temporal decrease of the viscosity under shear coincides with the formation of this hexagonal pattern

    Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

    Get PDF
    We present a novel approach for finding and evaluating structural models of small metallic nanoparticles. Rather than fitting a single model with many degrees of freedom, the approach algorithmically builds libraries of nanoparticle clusters from multiple structural motifs, and individually fits them to experimental PDFs. Each cluster-fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles

    Fluid Induced Particle Size Segregation in Sheared Granular Assemblies

    Full text link
    We perform a two-dimensional molecular-dynamics study of a model for sheared bidisperse granular systems under conditions of simple shear and Poiseuille flow. We propose a mechanism for particle-size segregation based on the observation that segregation occurs if the viscous length scale introduced by a liquid in the system is smaller than of the order of the particle size. We show that the ratio of shear rate to viscosity must be small if one wants to find size segregation. In this case the particles in the system arrange themselves in bands of big and small particles oriented along the direction of the flow. Similarly, in Poiseuille flow we find the formation of particle bands. Here, in addition, the variety of time scales in the flow leads to an aggregation of particles in the zones of low shear rate and can suppress size segregation in these regions. The results have been verified against simulations using a full Navier-Stokes description for the liquid.Comment: 11 pages, REVTEX format, ps figures compressed uuencoded separately or by e-mail from [email protected]. A postscript version of the paper will be available from http://www.ica1.uni-stuttgart.de/local/WWW/papers/papers.htm

    Ion velocity distributions in the vicinity of the current sheet in Earth's distant magnetotail

    Get PDF
    Observations of the three-dimensional velocity distributions of positive ions and electrons have been recently gained for the first time in Earth's distant magnetotail with the Galileo and Geotail spacecraft. For this brief discussion of these exciting results the focus is on the overall character of the ion velocity distributions during substorm activity. The ion velocity distributions within and near the magnetotail current sheet are not accurately described as convecting, isotropic Maxwellians. The observed velocity distributions are characterized by at least two robust types. The first type is similar to the 'lima bean'-shaped velocity distributions that are expected from the nonadiabatic acceleration of ions which execute Speiser-type trajectories in the current sheet. The second distribution is associated with the presence of cold ion beams that presumably also arise from the acceleration of plasma mantle ions in the electric and weak magnetic fields in the current sheet. The ion velocity distributions in a magnetic field structure that is similar to that for plasmoids are also examined. Again the velocity distributions are not Maxwellian but are indicative of nonadiabatic acceleration. An example of the pressure tensor within the plasmoid-like event is also presented because it is anticipated that the off-diagonal elements are important in a description of magnetotail dynamics. Thus our concept of magnetotail dynamics must advance from the present assumption of co-moving electron and ion Maxwellian distributions into reformulations in terms of global kinematical models and nonadiabatic particle motion

    Nonequilibrium Steady States of Driven Periodic Media

    Full text link
    We study a periodic medium driven over a random or periodic substrate. Our work is based on nonequilibrium continuum hydrodynamic equations of motion, which we derive microscopically. We argue that in the random case instabilities will always destroy the LRO of the lattice. In most, if not all, cases, the stable driven ordered state is a transverse smectic, with ordering wavevector perpendicular to the velocity. It consists of a periodic array of flowing liquid channels, with transverse displacements and density (``permeation mode'') as hydrodynamic variables. We present dynamic functional renormalization group calculations in two and three dimensions for an approximate model of the smectic. The finite temperature behavior is much less glassy than in equilibrium, owing to a disorder-driven effective ``heating'' (allowed by the absence of the fluctuation-dissipation theorem). This, in conjunction with the permeation mode, leads to a fundamentally analytic transverse response for T>0T>0. Our results are compared to recent experiments and other theoretical work.Comment: 39 PRB pages, RevTex and 9 postscript figures, uses multicol.st

    Practical mammography

    Get PDF
    ‘Digital health’ is an overarching concept that currently lacks theoretical definition and common terminology. For instance, this broad and emerging field includes all of the following terms within its lexicon: mHealth, Wireless Health, Health 2.0, eHealth, e-Patient(s), Healthcare IT/Health IT, Big Data, Health Data, Cloud Computing, Quantified Self, Wearable Computing, Gamification, and Telehealth/Telemedicine [1]. However, whilst a definition is difficult to provide, in this overview it is considered that digital health is the use of digital media to transform the way healthcare provision is conceived and delivered. We consider it does this through three basic features

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ⋆\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]
    • …
    corecore