5,816 research outputs found

    Suprathermal electrons at Saturn's bow shock

    Get PDF
    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with theory in which the "injection" of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ~1 MeV).Comment: 22 pages, 5 figures. Accepted for publication in Ap

    Lithium production on a low-mass secondary in a black hole soft X-ray transient

    Full text link
    We examine production of Li on the surface of a low-mass secondary in a black hole soft X-ray transient (BHSXT) through the spallation of CNO nuclei by neutrons which are ejected from a hot (> 10 MeV) advection-dominated accretion flow (ADAF) around the black hole. Using updated binary parameters, cross sections of neutron-induced spallation reactions, and mass accretion rates in ADAF derived from the spectrum fitting of multi-wavelength observations of quiescent BHSXTs, we obtain the equilibrium abundances of Li by equating the production rate of Li and the mass transfer rate through accretion to the black hole. The resulting abundances are found to be in good agreement with the observed values in seven BHSXTs. We note that the abundances vary in a timescale longer than a few months in our model. Moreover, the isotopic ratio Li6/Li7 is calculated to be about 0.7--0.8 on the secondaries, which is much higher than the ratio measured in meteorites. Detection of such a high value is favorable to the production of Li via spallation and the existence of a hot accretion flow, rather than an accretion disk corona system in quiescent BHSXT.Comment: 4 pages, 3 figures, and 2 tables, submitted to Astrophyscal Jounal Letter

    Mechanisms for High-frequency QPOs in Neutron Star and Black Hole Binaries

    Get PDF
    We explain the millisecond variability detected by Rossi X-ray Timing Explorer (RXTE) in the X-ray emission from a number of low mass X-ray binary systems (Sco X-1, 4U1728-34, 4U1608-522, 4U1636-536, 4U0614+091, 4U1735-44, 4U1820-30, GX5-1 and etc) in terms of dynamics of the centrifugal barrier, a hot boundary region surrounding a neutron star. We demonstrate that this region may experience the relaxation oscillations, and that the displacements of a gas element both in radial and vertical directions occur at the same main frequency, of order of the local Keplerian frequency. We show the importance of the effect of a splitting of the main frequency produced by the Coriolis force in a rotating disk for the interpretation of a spacing between the QPO peaks. We estimate a magnitude of the splitting effect and present a simple formula for the whole spectrum of the split frequencies. It is interesting that the first three lowest-order overtones fall in the range of 200-1200 Hz and match the kHz-QPO frequencies observed by RXTE. Similar phenomena should also occur in Black Hole (BH) systems, but, since the QPO frequency is inversely proportional to the mass of a compact object, the frequency of the centrifugal-barrier oscillations in the BH systems should be a factor of 5-10 lower than that for the NS systems. The X-ray spectrum formed in this region is a result of upscattering of a soft radiation (from a disk and a NS surface) off relatively hot electrons in the boundary layer. We also briefly discuss some alternative QPO models, including a possibility of acoustic oscillations in the boundary layer, the proper stellar rotation, and g-mode disk oscillations.Comment: The paper is coming out in the Astrophysical Journal in the 1st of May issue of 199

    Magnetoelectric effects in heavy-fermion superconductors without inversion symmetry

    Get PDF
    We investigate effects of strong electron correlation on magnetoelectric transport phenomena in noncentrosymmetric superconductors with particular emphasis on its application to the recently discovered heavy-fermion superconductor CePt3_3Si. Taking into account electron correlation effects in a formally exact way, we obtain the expression of the magnetoelectric coefficient for the Zeeman-field-induced paramagnetic supercurrent, of which the existence was predicted more than a decade ago. It is found that in contrast to the usual Meissner current, which is much reduced by the mass renormalization factor in the heavy-fermion state, the paramagnetic supercurrent is not affected by the Fermi liquid effect. This result implies that the experimental observation of the magnetoelectric effect is more feasible in heavy-fermion systems than that in conventional metals with moderate effective mass.Comment: 8 pages, 2 figures, minor correction

    Charge and Spin Transport in the One-dimensional Hubbard Model

    Full text link
    In this paper we study the charge and spin currents transported by the elementary excitations of the one-dimensional Hubbard model. The corresponding current spectra are obtained by both analytic methods and numerical solution of the Bethe-ansatz equations. For the case of half-filling, we find that the spin-triplet excitations carry spin but no charge, while charge η\eta-spin triplet excitations carry charge but no spin, and both spin-singlet and charge η\eta-spin-singlet excitations carry neither spin nor charge currents.Comment: 24 pages, 14 figure

    Kondo Problem and Related One-Dimensional Quantum Systems: Bethe Ansatz Solution and Boundary Conformal Field Theory

    Full text link
    We review some exact results on Kondo impurity systems derived from Bethe-ansatz solutions and boundary conformal field theory with particular emphasis on universal aspects of the phenomenon. The finite-size spectra characterizing the low-energy fixed point are computed from the Bethe-ansatz solutions of various models related to the Kondo problem. Using the finite-size scaling argument, we investigate their exact critical properties. We also discuss that a universal relation between the Kondo effect and the impurity effect in one-dimensional quantum systems usefully expedites our understanding of these different phenomena.Comment: 6 pages, no figure
    corecore