563 research outputs found
Fractional Aharonov-Bohm effect in mesoscopic rings
We study the effects of correlations on a one dimensional ring threaded by a
uniform magnetic flux. In order to describe the interaction between particles,
we work in the framework of the U Hubbard and - models. We focus
on the dilute limit. Our results suggest the posibility that the persistent
current has an anomalous periodicity , where is an integer in
the range ( is the number of particles in the ring
and is the flux quantum). We found that this result depends neither
on disorder nor on the detailed form of the interaction, while remains the on
site infinite repulsion.Comment: 14 pages (Revtex), 5 postscript figures. Send e-mail to:
[email protected]
Inferring flight parameters of Mesozoic avians through multivariate analyses of forelimb elements in their living relatives
Our knowledge of the diversity, ecology, and phylogeny of Mesozoic birds has increased significantly during recent decades, yet our understanding of their flight competence remains poor. Wing loading (WL) and aspect ratio (AR) are two aerodynamically relevant parameters, as they relate to energy costs of aerial locomotion and flight maneuverability. They can be calculated in living birds (i.e., Neornithes) from body mass (BM), wingspan (B), and lift surface (S L). However, the estimates for extinct birds can be subject to biases from statistical issues, phylogeny, locomotor adaptations, and diagenetic compaction. Here we develop a sequential approach for generating reliable multivariate models that allow estimation of measurements necessary to determine WL and AR in the main clades of non-neornithine Mesozoic birds. The strength of our predictions is supported by the use of those variables that show similar scaling patterns in modern and stem taxa (i.e., non-neornithine birds) and the similarity of our predictions with measurements obtained from fossils preserving wing outlines. In addition, although our WL and AR values are based on estimates (BM, B, and S L) that have an associated error, there is no cumulative error in their calculation, and both parameters show low prediction errors. Therefore, we present the first taxonomically broad, error-calibrated estimation of these two important aerodynamic parameters in non-neornithine birds. Such estimates show that the WL and AR of the non-neornithine birds here analyzed fall within the range of variation of modern birds (i.e., Neornithes). Our results indicate that most modern flight modes (e.g., continuous flapping, flap and gliding, flap and bounding, thermal soaring) were possible for the wide range of non-neornithine avian taxa; we found no evidence for the presence of dynamic soaring among these early birds
Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates
A theoretical study of single electron capacitance spectroscopy in quantum
dots is presented. Exact diagonalizations and the unrestricted Hartree-Fock
approximation have been used to shed light over some of the unresolved aspects.
The addition spectra of up to 15 electrons is obtained and compared with the
experiment. We show evidence for understanding the decrease of the single
electron tunneling rates in terms of the behavior of the spectral weight
function. (To appear in Phys. Rev. B (Rapid Comm.))Comment: 10 pages, Revtex, hard copy or PostScript Figures upon request on
[email protected]
Chiral biobased ionic liquids with cations or anions including bile acid building blocks as chiral selectors in voltammetry
Chiral ionic liquids (CILs), or ionic liquids (ILs) with chiral additives, are very attractive chiral media for enantioselective electroanalysis, on account of their high chiral structural order at the electrochemical interphase. A family of molecular salts with CIL properties is now introduced, based on the chiral steroid building block of deoxycholic acid implemented either in the anion or cation. Testing them as chiral additives in a commercial achiral IL, they enable voltammetric discrimination of the enantiomers of a model chiral probe on disposable screen-printed electrodes in terms of peak potential differences, which is the most desirable transduction mode of the enantiorecognition event. The probe enantiomer sequence is the same for all selectors, consistent with their sharing the same chiral building block configuration. This proof-of-concept widens the application fields of bile acid derivatives as chiral selectors, while also enriching the still very few CIL families so far explored for applications in chiral electroanalysis
Exact ground states for the four-electron problem in a two-dimensional finite Hubbard square system
We present exact explicit analytical results describing the exact ground
state of four electrons in a two dimensional square Hubbard cluster containing
16 sites taken with periodic boundary conditions. The presented procedure,
which works for arbitrary even particle number and lattice sites, is based on
explicitly given symmetry adapted base vectors constructed in r-space. The
Hamiltonian acting on these states generates a closed system of 85 linear
equations providing by its minimum eigenvalue the exact ground state of the
system. The presented results, described with the aim to generate further
creative developments, not only show how the ground state can be exactly
obtained and what kind of contributions enter in its construction, but
emphasize further characteristics of the spectrum. On this line i) possible
explications are found regarding why weak coupling expansions often provide a
good approximation for the Hubbard model at intermediate couplings, or ii)
explicitly given low lying energy states of the kinetic energy, avoiding double
occupancy, suggest new roots for pairing mechanism attracting decrease in the
kinetic energy, as emphasized by kinetic energy driven superconductivity
theories.Comment: 37 pages, 18 figure
Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring
The persistent current through a quantum dot inserted in a mesoscopic ring of
length L is studied. A cluster representing the dot and its vicinity is exactly
diagonalized and embedded into the rest of the ring. The Kondo resonance
provides a new channel for the current to flow. It is shown that due to scaling
properties, the persistent current at the Kondo regime is enhanced relative to
the current flowing either when the dot is at resonance or along a perfect ring
of same length. In the Kondo regime the current scales as , unlike
the scaling of a perfect ring. We discuss the possibility of detection
of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure
Effective-field-theory approach to persistent currents
Using an effective-field-theory (nonlinear sigma model) description of
interacting electrons in a disordered metal ring enclosing magnetic flux, we
calculate the moments of the persistent current distribution, in terms of
interacting Goldstone modes (diffusons and cooperons). At the lowest or
Gaussian order we reproduce well-known results for the average current and its
variance that were originally obtained using diagrammatic perturbation theory.
At this level of approximation the current distribution can be shown to be
strictly Gaussian. The nonlinear sigma model provides a systematic way of
calculating higher-order contributions to the current moments. An explicit
calculation for the average current of the first term beyond Gaussian order
shows that it is small compared to the Gaussian result; an order-of-magnitude
estimation indicates that the same is true for all higher-order contributions
to the average current and its variance. We therefore conclude that the
experimentally observed magnitude of persistent currents cannot be explained in
terms of interacting diffusons and cooperons.Comment: 12 pages, no figures, final version as publishe
Mitigating the impact of conference and travel cancellations on researchers’ futures
The need to protect public health during the current COVID-19 pandemic has necessitated conference cancellations on an unprecedented scale. As the scientific community adapts to new working conditions, it is important to recognize that some of our actions may disproportionately affect early-career researchers and scientists from countries with limited research funding. We encourage all conference organizers, funders and institutions who are able to do so to consider how they can mitigate the unintended consequences of conference and travel cancellations and we provide seven recommendations for how this could be achieved. The proposed solutions may also offer long-term benefits for those who normally cannot attend conferences, and thus lead to a more equitable future for generations of researchers
- …