12,578 research outputs found
Faster Separators for Shallow Minor-Free Graphs via Dynamic Approximate Distance Oracles
Plotkin, Rao, and Smith (SODA'97) showed that any graph with edges and
vertices that excludes as a depth -minor has a
separator of size and that such a separator can be
found in time. A time bound of for
any constant was later given (W., FOCS'11) which is an
improvement for non-sparse graphs. We give three new algorithms. The first has
the same separator size and running time O(\mbox{poly}(h)\ell
m^{1+\epsilon}). This is a significant improvement for small and .
If for an arbitrarily small chosen constant
, we get a time bound of O(\mbox{poly}(h)\ell n^{1+\epsilon}).
The second algorithm achieves the same separator size (with a slightly larger
polynomial dependency on ) and running time O(\mbox{poly}(h)(\sqrt\ell
n^{1+\epsilon} + n^{2+\epsilon}/\ell^{3/2})) when . Our third algorithm has running time
O(\mbox{poly}(h)\sqrt\ell n^{1+\epsilon}) when . It finds a separator of size O(n/\ell) + \tilde
O(\mbox{poly}(h)\ell\sqrt n) which is no worse than previous bounds when
is fixed and . A main tool in obtaining our results
is a novel application of a decremental approximate distance oracle of Roditty
and Zwick.Comment: 16 pages. Full version of the paper that appeared at ICALP'14. Minor
fixes regarding the time bounds such that these bounds hold also for
non-sparse graph
Twitter v. Musk: The Trial of the Century That Wasn\u27t
The months-long saga over Elon Musk\u27s on-again, off-again acquisition of Twitter provided considerable entertainment for lawyers and laypeople alike. But for those of us who teach business law, it also provided a unique (and in certain ways, vexing) opportunity to show real-time examples of the legal principles that are the grist for courses in contracts, corporations, corporate finance, and mergers and acquisitions.
Both of us found ourselves incorporating the saga into our classroom discussions, which in turn informed our own thinking about how the dynamic played out. Although we were both relatively active on social media (indeed on Twitter itself) as the saga unfolded, the final closing of the deal in late October has given us a chance to reflect on our own takeaways in hindsight
Tunable Double Negative Band Structure from Non-Magnetic Coated Rods
A system of periodic poly-disperse coated nano-rods is considered. Both the
coated nano-rods and host material are non-magnetic. The exterior nano-coating
has a frequency dependent dielectric constant and the rod has a high dielectric
constant. A negative effective magnetic permeability is generated near the Mie
resonances of the rods while the coating generates a negative permittivity
through a field resonance controlled by the plasma frequency of the coating and
the geometry of the crystal. The explicit band structure for the system is
calculated in the sub-wavelength limit. Tunable pass bands exhibiting negative
group velocity are generated and correspond to simultaneously negative
effective dielectric permittivity and magnetic permeability. These can be
explicitly controlled by adjusting the distance between rods, the coating
thickness, and rod diameters
High rate locally-correctable and locally-testable codes with sub-polynomial query complexity
In this work, we construct the first locally-correctable codes (LCCs), and
locally-testable codes (LTCs) with constant rate, constant relative distance,
and sub-polynomial query complexity. Specifically, we show that there exist
binary LCCs and LTCs with block length , constant rate (which can even be
taken arbitrarily close to 1), constant relative distance, and query complexity
. Previously such codes were known to exist
only with query complexity (for constant ), and
there were several, quite different, constructions known.
Our codes are based on a general distance-amplification method of Alon and
Luby~\cite{AL96_codes}. We show that this method interacts well with local
correctors and testers, and obtain our main results by applying it to suitably
constructed LCCs and LTCs in the non-standard regime of \emph{sub-constant
relative distance}.
Along the way, we also construct LCCs and LTCs over large alphabets, with the
same query complexity , which additionally have
the property of approaching the Singleton bound: they have almost the
best-possible relationship between their rate and distance. This has the
surprising consequence that asking for a large alphabet error-correcting code
to further be an LCC or LTC with query
complexity does not require any sacrifice in terms of rate and distance! Such a
result was previously not known for any query complexity.
Our results on LCCs also immediately give locally-decodable codes (LDCs) with
the same parameters
- …