5,273 research outputs found

    Islands in the landscape

    Get PDF
    The string theory landscape consists of many metastable de Sitter vacua, populated by eternal inflation. Tunneling between these vacua gives rise to a dynamical system, which asymptotically settles down to an equilibrium state. We investigate the effects of sinks to anti-de Sitter space, and show how their existence can change probabilities in the landscape. Sinks can disturb the thermal occupation numbers that would otherwise exist in the landscape and may cause regions that were previously in thermal contact to be divided into separate, thermally isolated islands.Comment: 31 pages, 8 figure

    Towards a gauge invariant volume-weighted probability measure for eternal inflation

    Full text link
    An improved volume-weighted probability measure for eternal inflation is proposed. For the models studied in this paper it leads to simple and intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde

    Creation of the universe with a stealth scalar field

    Full text link
    The stealth scalar field is a non-trivial configuration without any back-reaction to geometry, which is characteristic for non-minimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by the Hartle and Hawking's semi-classical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe adde

    Reheating after Inflation

    Get PDF
    The theory of reheating of the Universe after inflation is developed. The transition from inflation to the hot Universe turns out to be strongly model-dependent and typically consists of several stages. Immediately after inflation the field ϕ\phi begins rapidly rolling towards the minimum of its effective potential. Contrary to some earlier expectations, particle production during this stage does not lead to the appearance of an extra friction term Γϕ˙\Gamma\dot\phi in the equation of motion of the field ϕ\phi. Reheating becomes efficient only at the next stage, when the field ϕ\phi rapidly oscillates near the minimum of its effective potential. We have found that typically in the beginning of this stage the classical inflaton field ϕ\phi very rapidly (explosively) decays into ϕ\phi-particles or into other bosons due to broad parametric resonance. This stage cannot be described by the standard elementary approach to reheating based on perturbation theory. The bosons produced at this stage, as well as some part of the classical field ϕ\phi which survives the stage of explosive reheating, should further decay into other particles, which eventually become thermalized. The last stages of decay can be described in terms of perturbation theory. Complete reheating is possible only in those theories where a single massive ϕ\phi-particle can decay into other particles. This imposes strong constraints on the structure of inflationary models. On the other hand, this means that a scalar field can be a cold dark matter candidate even if it is strongly coupled to other fields.Comment: 7 pages, 1 figure, LaTeX, UH-IfA-94/35; SU-ITP-94-13; YITP/U-94-15 (paper replaced by its version to be published in Phys. Rev. Lett.

    Inflation without Slow Roll

    Full text link
    We draw attention to the possibility that inflation (i.e. accelerated expansion) might continue after the end of slow roll, during a period of fast oscillations of the inflaton field \phi . This phenomenon takes place when a mild non-convexity inequality is satisfied by the potential V(\phi). The presence of such a period of \phi-oscillation-driven inflation can substantially modify reheating scenarios. In some models the effect of these fast oscillations might be imprinted on the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references adde

    Jordan Frame Supergravity and Inflation in NMSSM

    Full text link
    We present a complete explicit N=1, d=4 supergravity action in an arbitrary Jordan frame with non-minimal scalar-curvature coupling of the form Φ(z,zˉ) R\Phi(z, \bar z)\, R. The action is derived by suitably gauge-fixing the superconformal action. The theory has a modified Kaehler geometry, and it exhibits a significant dependence on the frame function Φ(z,zˉ)\Phi (z, \bar z) and its derivatives over scalars, in the bosonic as well as in the fermionic part of the action. Under certain simple conditions, the scalar kinetic terms in the Jordan frame have a canonical form. We consider an embedding of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) gauge theory into supergravity, clarifying the Higgs inflation model recently proposed by Einhorn and Jones. We find that the conditions for canonical kinetic terms are satisfied for the NMSSM scalars in the Jordan frame, which leads to a simple action. However, we find that the gauge singlet field experiences a strong tachyonic instability during inflation in this model. Thus, a modification of the model is required to support the Higgs-type inflation.Comment: 1+36 pages, 4 figures; v2: discussion updated in Subsec. 4.1, Refs. added, typos fixed. To appear in PR

    Resonance enhancement of particle production during reheating

    Full text link
    We found a consistent equation of reheating after inflation, which shows that for small quantum fluctuations the frequencies of resonance are slighted different from the standard ones. Quantum interference is taken into account and we found that at large fluctuations the process mimics very well the usual parametric resonance but proceed in a different dynamical way. The analysis is made in a toy quantum mechanical model and we discuss further its extension to quantum field theory.Comment: 4 pages, 4 figures(eps), using RevTe

    Can the Gravitational Wave Background from Inflation be Detected Locally?

    Full text link
    The Cosmic Background Explorer (COBE) detection of microwave background anisotropies may contain a component due to gravitational waves generated by inflation. It is shown that the gravitational waves from inflation might be seen using `beam-in-space' detectors, but not the Laser Interferometer Gravity Wave Observatory (LIGO). The central conclusion, dependent only on weak assumptions regarding the physics of inflation, is a surprising one. The larger the component of the COBE signal due to gravitational waves, the {\em smaller} the expected local gravitational wave signal.Comment: 8 pages, standard LaTeX (no figures), SUSSEX-AST 93/7-

    Racetrack Inflation

    Full text link
    We develop a model of eternal topological inflation using a racetrack potential within the context of type IIB string theory with KKLT volume stabilization. The inflaton field is the imaginary part of the K\"ahler structure modulus, which is an axion-like field in the 4D effective field theory. This model does not require moving branes, and in this sense it is simpler than other models of string theory inflation. Contrary to single-exponential models, the structure of the potential in this example allows for the existence of saddle points between two degenerate local minima for which the slow-roll conditions can be satisfied in a particular range of parameter space. We conjecture that this type of inflation should be present in more general realizations of the modular landscape. We also consider `irrational' models having a dense set of minima, and discuss their possible relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to appear in JHE

    More on Tachyon Cosmology in De Sitter Gravity

    Full text link
    We aim to study rolling tachyon cosmological solutions in de Sitter gravity. The solutions are taken to be flat FRW type and these are not time-reversal symmetric. We find that cosmological constant of our universe has to be fine-tuned at the level of the action itself, as in KKLT string compactification. The rolling tachyon can give rise to required inflation with suitable choice of the initial conditions which include nonvanishing Hubble constant. We also determine an upper bound on the volume of the compactification manifold.Comment: 15pp, 3 figures; references adde
    • …
    corecore