224,555 research outputs found

    Sentencing Disparities in Yakima County: The Washington Sentencing Reform Act Revisited

    Get PDF
    This study expands upon an earlier exploration of sentencing disparity in the Yakima County, Washington judicial system. The Sentencing Reform Act was adopted in 1981, becoming effective in 1984, to end inequitable sentences imposed on individuals who are convicted of similar offenses. This work adds to the original study by including an investigation of exceptional sentences and offense type crime. Independent variables are defendants\u27 ethnicity (Hispanic, Native American, and White), age, and gender. The period of investigation includes fiscal years 1986 through 1991. Data was provided to the researchers by the Washington Sentencing Guidelines Commission and was processed using a difference of means test (ANOVA program). The findings suggest that sentencing disparity, while not being widespread, does persist nearly a decade after the Sentencing Reform Act was adopted. Hispanic defendants who had no prior criminal history were apt to receive disproportionately more severe sentences for similar crimes than Native Americans or whites

    Relationship between Fujikawa's Method and the Background Field Method for the Scale Anomaly

    Get PDF
    We show the equivalence between Fujikawa's method for calculating the scale anomaly and the diagrammatic approach to calculating the effective potential via the background field method, for an O(N)O(N) symmetric scalar field theory. Fujikawa's method leads to a sum of terms, each one superficially in one-to-one correspondence with a vacuum diagram of the 1-loop expansion. From the viewpoint of the classical action, the anomaly results in a breakdown of the Ward identities due to a scale-dependence of the couplings, whereas in terms of the effective action, the anomaly is the result of the breakdown of Noether's theorem due to explicit symmetry breaking terms of the effective potential.Comment: 9 pages (this version is the published version

    In situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) at temperatures below 150 °C

    Get PDF
    We report an in situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) from a 10-nm-thick amorphous mixture of Co and Si in the ratio 1:2 which was formed by codeposition of Co and Si near room temperature. Nuclei of CoSi2 are observed in the as-deposited film. These nuclei are epitaxial and extend through the whole film thickness. Upon annealing, these columnar epitaxial CoSi2 grains grow laterally at temperatures as low as 50 °C. The kinetics of this lateral epitaxial growth was studied at temperatures between 50 and 150 °C. The activation energy of the growth process is 0.8±0.1 eV

    Formation of Ti–Zr–Cu–Ni bulk metallic glasses

    Get PDF
    Formation of bulk metallic glass in quaternary Ti–Zr–Cu–Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti34Zr11Cu47Ni8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti34Zr11Cu47Ni8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation

    Self-Heating Ability of Geopolymers Enhanced by Carbon Black Admixtures at Different Voltage Loads

    Get PDF
    Sustainable development in the construction industry can be achieved by the design of multifunctional materials with good mechanical properties, durability, and reasonable environmental impacts. New functional properties, such as self-sensing, self-heating, or energy harvesting, are crucially dependent on electrical properties, which are very poor for common building materials. Therefore, various electrically conductive admixtures are used to enhance their electrical properties. Geopolymers based on waste or byproduct precursors are promising materials that can gain new functional properties by adding a reasonable amount of electrically conductive admixtures. The main aim of this paper lies in the design of multifunctional geopolymers with self-heating abilities. Designed geopolymer mortars based on blast-furnace slag activated by water glass and 6 dosages of carbon black (CB) admixture up to 2.25 wt. % were studied in terms of basic physical, mechanical, thermal, and electrical properties (DC). The self-heating ability of the designed mortars was experimentally determined at 40 and 100 V loads. The percolation threshold for self-heating was observed at 1.5 wt. % of carbon black with an increasing self-heating performance for higher CB dosages. The highest power of 26 W and the highest temperature increase of about 110 °C were observed for geopolymers with 2.25 wt. % of carbon black admixture at 100 V

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure
    corecore