18 research outputs found

    The Worldvolume Action of Kink Solitons in AdS Spacetime

    Full text link
    A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS spacetime is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in two expansion parameters--associated with the hypersurface fluctuation length and the radius of AdS spacetime respectively. Two alternative methods are given for doing this. The results are expressed in terms of the trace of the extrinsic curvature and the intrinsic scalar curvature. In addition to conformal Galileon interactions, we find a non-Galileon term which is never sub-dominant. This method can be extended to any conformally flat bulk spacetime.Comment: 32 pages, 3 figures, typos corrected and additional comments adde

    Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation

    Get PDF
    We study a cosmological scenario in which the DBI action governing the motion of a D3-brane in a higher-dimensional spacetime is supplemented with an induced gravity term. The latter reduces to the quartic Galileon Lagrangian when the motion of the brane is non-relativistic and we show that it tends to violate the null energy condition and to render cosmological fluctuations ghosts. There nonetheless exists an interesting parameter space in which a stable phase of quasi-exponential expansion can be achieved while the induced gravity leaves non trivial imprints. We derive the exact second-order action governing the dynamics of linear perturbations and we show that it can be simply understood through a bimetric perspective. In the relativistic regime, we also calculate the dominant contribution to the primordial bispectrum and demonstrate that large non-Gaussianities of orthogonal shape can be generated, for the first time in a concrete model. More generally, we find that the sign and the shape of the bispectrum offer powerful diagnostics of the precise strength of the induced gravity.Comment: 34 pages including 9 figures, plus appendices and bibliography. Wordings changed and references added; matches version published in JCA

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    EFT beyond the horizon: stochastic inflation and how primordial quantum fluctuations go classical

    Get PDF
    We identify the effective theory describing inflationary super-Hubble scales and show it to be a special case of effective field theories appropriate to open systems. Open systems allow information to be exchanged between the degrees of freedom of interest and those that are integrated out, such as for particles moving through a fluid. Strictly speaking they cannot in general be described by an effective lagrangian; rather the appropriate `low-energy' limit is instead a Lindblad equation describing the evolution of the density matrix of the slow degrees of freedom. We derive the equation relevant to super-Hubble modes of quantum fields in near-de Sitter spacetimes and derive two implications. We show the evolution of the diagonal density-matrix elements quickly approaches the Fokker-Planck equation of Starobinsky's stochastic inflationary picture. This provides an alternative first-principles derivation of this picture's stochastic noise and drift, as well as its leading corrections. (An application computes the noise for systems with a sub-luminal sound speed.) We argue that the presence of interactions drives the off-diagonal density-matrix elements to zero in the field basis. This shows why the field basis is the `pointer basis' for the decoherence of primordial quantum fluctuations while they are outside the horizon, thus allowing them to re-enter as classical fluctuations, as assumed when analyzing CMB data. The decoherence process is efficient, occurring after several Hubble times even for interactions as weak as gravitational-strength. Crucially, the details of the interactions largely control only the decoherence time and not the nature of the final late-time stochastic state, much as interactions can control the equilibration time for thermal systems but are largely irrelevant to the properties of the resulting equilibrium state

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    Get PDF
    corecore