3,923 research outputs found

    Hermitian Dirac Hamiltonian in time dependent gravitational field

    Full text link
    It is shown by a straightforward argument that the Hamiltonian generating the time evolution of the Dirac wave function in relativistic quantum mechanics is not hermitian with respect to the covariantly defined inner product whenever the background metric is time dependent. An alternative, hermitian, Hamiltonian is found and is shown to be directly related to the canonical field Hamiltonian used in quantum field theory.Comment: 9 pages, final version, to appear in Class. Quant. Gra

    Canonical and gravitational stress-energy tensors

    Full text link
    It is dealt with the question, under which circumstances the canonical Noether stress-energy tensor is equivalent to the gravitational (Hilbert) tensor for general matter fields under the influence of gravity. In the framework of general relativity, the full equivalence is established for matter fields that do not couple to the metric derivatives. Spinor fields are included into our analysis by reformulating general relativity in terms of tetrad fields, and the case of Poincare gauge theory, with an additional, independent Lorentz connection, is also investigated. Special attention is given to the flat limit, focusing on the expressions for the matter field energy (Hamiltonian). The Dirac-Maxwell system is investigated in detail, with special care given to the separation of free (kinetic) and interaction (or potential) energy. Moreover, the stress-energy tensor of the gravitational field itself is briefly discussed.Comment: final version, to appear in Int. J. Mod. Phys.

    Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that plays critical functions in many biological processes, including DNA repair and gene transcription. The main function of PARP-1 is to catalyze the transfer of ADP-ribose units from nicotinamide adenine dinucleotide (NAD<sup>+</sup>) to a large array of acceptor proteins, which comprises histones, transcription factors, as well as PARP-1 itself. We have previously demonstrated that transcription of the PARP-1 gene essentially rely on the opposite regulatory actions of two distinct transcription factors, Sp1 and NFI. In the present study, we examined whether suppression of PARP-1 expression in embryonic fibroblasts derived from PARP-1 knockout mice (PARP-1<sup>-/-</sup>) might alter the expression and/or DNA binding properties of Sp1 and NFI. We also explored the possibility that Sp1 or NFI (or both) may represent target proteins of PARP-1 activity.</p> <p>Results</p> <p>Expression of both Sp1 and NFI was found to be considerably reduced in PARP-1<sup>-/- </sup>cells. Co-immunoprecipitation assays revealed that PARP-1 physically interacts with Sp1 in a DNA-independent manner, but neither with Sp3 nor NFI, in PARP-1<sup>+/+ </sup>cells. In addition, <it>in vitro </it>PARP assays indicated that PARP-1 could catalyze the addition of polymer of ADP-ribose to Sp1, which also translated into a reduction of Sp1 binding to its consensus DNA target site. Transfection of the PARP-1 promoter into both PARP-1<sup>+/+ </sup>and PARP-1<sup>-/- </sup>cells revealed that the lack of PARP-1 expression in PARP-1<sup>-/- </sup>cells also results in a strong increase in PARP-1 promoter activity. This influence of PARP-1 was found to rely on the presence of the Sp1 sites present on the basal PARP-1 promoter as their mutation entirely abolished the increased promoter activity observed in PARP-1<sup>-/- </sup>cells. Subjecting PARP-1<sup>+/+ </sup>cells to an oxidative challenge with hydrogen peroxide to increase PARP-1 activity translated into a dramatic reduction in the DNA binding properties of Sp1. However, its suppression by the inhibitor PJ34 improved DNA binding of Sp1 and led to a dramatic increase in PARP-1 promoter function.</p> <p>Conclusion</p> <p>Our results therefore recognized Sp1 as a target protein of PARP-1 activity, the addition of polymer of ADP-ribose to this transcription factor restricting its positive regulatory influence on gene transcription.</p
    corecore