80 research outputs found

    Regulation of Granulocyte and Macrophage Populations of Murine Bone Marrow Cells by G-CSF and CD137 Protein

    Get PDF
    BACKGROUND: Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis. METHODOLOGY/PRINCIPAL FINDINGS: Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors. CONCLUSIONS/SIGNIFICANCE: This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage

    Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We introduce Glaucoma Discovery Platform (GDP), an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets.</p> <p>Description</p> <p>Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-<it>Gpnmb<sup>+ </sup></it>strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s) of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM).</p> <p>Conclusion</p> <p>Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages. Datgan and GDP are available from <url>http://glaucomadb.jax.org/glaucoma</url>.</p

    Repair and Reconstruction of a Resected Tumor Defect Using a Composite of Tissue Flap–Nanotherapeutic–Silk Fibroin and Chitosan Scaffold

    Get PDF
    A multifaceted strategy using a composite of anti-cancer nanotherapeutic and natural biomaterials silk fibroin (SF) and chitosan (CS) blend scaffolds was investigated for the treatment of a tissue defect post-tumor resection by providing local release of the therapeutic and filling of the defect site with the regenerative bioscaffolds. The scaffold-emodin nanoparticle composites were fabricated and characterized for drug entrapment and release, mechanical strength, and efficacy against GILM2 breast cancer cells in vitro and in vivo in a rat tumor model. Emodin nanoparticles were embedded in SF and SFCS scaffolds and the amount of emodin entrapment was a function of the scaffold composition and emodin loading concentration. In vitro, there was a burst release of emodin from all scaffolds during the first 2 days though it was detected even after 24 days. Increase in emodin concentration in the scaffolds decreased the overall elastic modulus and ultimate tensile strength of the scaffolds. After 6 weeks of in vivo implantation, the cell density (p < 0.05) and percent degradation (p < 0.01) within the remodeled no emodin SFCS scaffold was significantly higher than the emodin loaded SFCS scaffolds, although there was no significant difference in the amount of collagen deposition in the regenerated SFCS scaffold. The presence and release of emodin from the SFCS scaffolds inhibited the integration of SFCS into the adjacent tumor due to the formation of an interfacial barrier of connective tissue that was lacking in emodin-free SFCS scaffolds. While no significant difference in tumor size was observed between the in vivo tested groups, tumors treated with emodin loaded SFCS scaffolds had decreased presence and size and similar regeneration of new tissue as compared to no emodin SFCS scaffolds

    Bedenken gegen die Verwendung der Begriffe Toxikose und Intoxikation als Krankheitsbezeichnung

    No full text

    Experimentelle Beiträge zur Trypanosomeninfection

    No full text
    corecore