16 research outputs found

    Pyramidal Neurons of the Zebrafish Tectum Receive Highly Convergent Input From Torus Longitudinalis

    Get PDF
    The torus longitudinalis (TL) is a midbrain structure unique to ray finned fish. Although previously implicated in orienting behaviors elicited by changes in ambient lighting, the role of TL in visual processing is not well-understood. TL is reciprocally connected to tectum and is the only known source of synaptic input to the stratum marginalis (SM) layer of tectal neuropil. Conversely, tectal pyramidal neurons (PyrNs) are the only identified tectal neuron population that forms a dendrite in SM. In this study we describe a zebrafish gal4 transgenic that labels TL neurons that project to SM. We demonstrate that the axonal TL projection to SM in zebrafish is glutamatergic. Consistent with these axons synapsing directly onto PyrNs, SM-targeted dendrites of PyrNs contain punctate enrichments of the glutamatergic post-synaptic marker protein PSD95. Sparse genetic labeling of individual TL axons and PyrN dendrites enabled quantitative morphometric analysis that revealed (1) large, sparsely branched TL axons in SM and (2) small, densely innervated PyrN dendrites in SM. Together this unique combination of morphologies support a wiring diagram in which TL inputs to PyrNs exhibit a high degree of convergence. We propose that this convergence functions to generate large, compound visual receptive fields in PyrNs. This quantitative anatomical data will instruct future functional studies aimed at identifying the precise contribution of TL-PyrN circuitry to visual behavior

    FTIR Analysis of Aerogel Keystones from the Stardust Interstellar Dust Collector: Assessment of Terrestrial Organic Contamination and X-Ray Microprobe Beam Damage

    Get PDF
    The Stardust Interstellar Dust Collector (SIDC) was intended to capture and return contemporary interstellar dust. The approx.0.1 sq m collector was composed of aerogel tiles (85% of the collecting area) and aluminum foils and was exposed to the interstellar dust stream for a total exposure factor of 20 sq m day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. Sandford et al. recently assessed numerous potential sources of organic contaminants in the Stardust cometary collector. These contaminants could greatly complicate the analysis and interperetation of any organics associated with interstellar dust, particularly because signals from these particles are expected to be exceedingly small. Here, we present a summary of FTIR analyses of over 20 aerogel keystones, many of which contained candidates for interstellar dust
    corecore