53 research outputs found

    On the orthogonalization of bred vectors

    Get PDF
    The key to the improvement of the quality of ensemble forecasts assessing the inherent flow uncertainties is the choice of the initial ensemble perturbations. To generate such perturbations, the breeding of growing modes approach has been used for the past two decades. Here, the fastest-growing error modes of the initial model state are estimated. However, the resulting bred vectors (BVs) mainly point in the phase space direction of the leading Lyapunov vector and therefore favor one direction of growing errors. To overcome this characteristic and obtain growing modes pointing to Lyapunov vectors different from the leading one, an orthogonalization implemented as a singular value decomposition based on the similarity between the BVs is applied. This transformation is similar to that used in the ensemble transform technique currently in operational use at NCEP but with certain differences in the metric used and in the implementation. In this study, results of this approach us! ing BVs generated in the Ensemble Forecasting System (EFS) based on the global numerical weather prediction model GME of the German Meteorological Service are presented. The gain in forecast performance achieved with the orthogonalized BV initialization is shown by using different probabilistic forecast scores evaluating ensemble reliability, variance, and resolution. For a 3-month period in summer 2007, the results are compared to forecasts generated with simple BV initializations of the same ensemble prediction system as well as operational ensemble forecasts from ECMWF and NCEP. The orthogonalization vastly improves the GME-EFS scores and makes them competitive with the two other centers

    Radio holographic filtering, error estimation, and quality control of radio occultation data

    Get PDF
    Processing of radio occultation data requires filtering and quality control for the noise reduction and sorting out corrupted data samples. We introduce a radio holographic filtering algorithm based on the synthesis of canonical transform (CT2) and radio holographic focused synthesized aperture (RHFSA) methods. The field in the CT2-transformed space is divided by a reference signal to subtract the regular phase variation and to compress the spectrum. Next, it is convolved with a Gaussian filter window and multiplied by the reference signal to restore the phase variation. This algorithm is simple to implement, and it is numerically efficient. Numerical simulation of processing radio occultations with a realistic receiver noise indicates a good performance of the method. We introduce a new technique of the error estimation of retrieved bending angle profiles based on the width of the running spectra of the transformed wavefield multiplied with the reference signal. We describe a quality control method for the discrimination of corrupted samples in the L2 channel, which is most susceptible to signal tracking errors. We apply the quality control and error estimation techniques for the processing of data acquired by Challenging Minisatellite Payload (CHAMP) and perform a statistical comparison of CHAMP data with the analyses of the German Weather Service (DWD). The statistical analysis shows a good agreement between the CHAMP and DWD error estimates and the observed CHAMP–DWD differences. This corroborates the efficiency of the proposed quality control and error estimation techniques

    Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model

    No full text
    The most recent version of the Max Planck Institute for Meteorology atmospheric general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate. In a series of Atmospheric Model Intercomparison Project (AMIP)-style experiments with resolutions ranging between T21L19 and T159L31, the systematic errors and convergence properties are assessed for two vertical resolutions. At low vertical resolution (L19) there is no evidence for convergence to a more realistic climate state for horizontal resolutions higher than T42. At higher vertical resolution (L31), on the other hand, the root-mean-square errors decrease monotonically with increasing horizontal resolution. Furthermore, except for T42, the L31 versions are superior to their L19 counterparts, and the improvements become more evident at increasingly higher horizontal resolutions. This applies, in particular, to the zonal mean climate state and to the stationary wave patterns in boreal winter. As in previous studies, increasing horizontal resolution leads to a warming of the troposphere, most prominently at midlatitudes, and to a poleward shift and intensification of the midlatitude westerlies. Increasing the vertical resolution has the opposite effect, almost independent of horizontal resolution. Whereas the atmosphere is colder at low and middle latitudes, it is warmer at high latitudes and close to the surface. In addition, increased vertical resolution results in a pronounced warming in the polar upper troposphere and lower stratosphere, where the cold bias is reduced by up to 50% compared to L19 simulations. Consistent with these temperature changes is a decrease and equatorward shift of the midlatitude westerlies. The substantial benefits in refining both horizontal and vertical resolution give some support to scaling arguments deduced from quasigeostrophic theory implying that horizontal and vertical resolution ought to be chosen consistently
    • 

    corecore