463 research outputs found

    Genome-Wide Interaction Study of Omega-3 PUFAs and Other Fatty Acids on Inflammatory Biomarkers of Cardiovascular Health in the Framingham Heart Study

    Get PDF
    Numerous genetic loci have been identified as being associated with circulating fatty acid (FA) levels and/or inflammatory biomarkers of cardiovascular health (e.g., C-reactive protein). Recently, using red blood cell (RBC) FA data from the Framingham Offspring Study, we conducted a genome-wide association study of over 2.5 million single nucleotide polymorphisms (SNPs) and 22 RBC FAs (and associated ratios), including the four Omega-3 FAs (ALA, DHA, DPA, and EPA). Our analyses identified numerous causal loci. In this manuscript, we investigate the extent to which polyunsaturated fatty acid (PUFA) levels moderate the relationship of genetics to cardiovascular health biomarkers using a genome-wide interaction study approach. In particular, we test for possible gene–FA interactions on 9 inflammatory biomarkers, with 2.5 million SNPs and 12 FAs, including all Omega-3 PUFAs. We identified eighteen novel loci, including loci which demonstrate strong evidence of modifying the impact of heritable genetics on biomarker levels, and subsequently cardiovascular health. The identified genes provide increased clarity on the biological functioning and role of Omega-3 PUFAs, as well as other common fatty acids, in cardiovascular health, and suggest numerous candidate loci for future replication and biological characterization

    Effects of Light-at-Night on the Rat Liver - A Role for the Autonomic Nervous System

    Get PDF
    Exposure to light at night (LAN) has been associated with serious pathologies, including obesity, diabetes and cancer. Recently we showed that 2 h of LAN impaired glucose tolerance in rats. Several studies have suggested that the autonomic nervous system (ANS) plays an important role in communicating these acute effects of LAN to the periphery. Here, we investigated the acute effects of LAN on the liver transcriptome of male Wistar rats. Expression levels of individual genes were not markedly affected by LAN, nevertheless pathway analysis revealed clustered changes in a number of endocrine pathways. Subsequently, we used selective hepatic denervations [sympathetic (Sx), parasympathetic (Px), total (Tx, i.e., Sx plus Px), sham] to investigate the involvement of the ANS in the effects observed. Surgical removal of the sympathetic or parasympathetic hepatic branches of the ANS resulted in many, but small changes in the liver transcriptome, including a pathway involved with circadian clock regulation, but it clearly separated the four denervation groups. On the other hand, analysis of the liver metabolome was not able to separate the denervation groups, and only 6 out of 78 metabolites were significantly up- or downregulated after denervations. Finally, removal of the sympathetic and parasympathetic hepatic nerves combined with LAN exposure clearly modulated the effects of LAN on the liver transcriptome, but left most endocrine pathways unaffected. Conclusion: One-hour light-at-night acutely affects the liver transcriptome. Part of this effect is mediated via the nervous innervation, as a hepatectomy modulated and reduced the effect of LAN on liver transcripts

    Evaluating the Performance of Gene-Based Tests of Genetic Association when Testing for Association Between Methylation and Change in Triglyceride Levels at GAW20

    Get PDF
    Although methylation data continues to rise in popularity, much is still unknown about how to best analyze methylation data in genome-wide analysis contexts. Given continuing interest in gene-based tests for next-generation sequencing data, we evaluated the performance of novel gene-based test statistics on simulated data from GAW20. Our analysis suggests that most of the gene-based tests are detecting real signals and maintaining the Type I error rate. The minimum pvalue and threshold-based tests performed well compared to single-marker tests in many cases, especially when the number of variants was relatively large with few true causal variants in the set

    Epigenome Wide Association Study of SNP–CpG Interactions on Changes in Triglyceride Levels after Pharmaceutical Intervention: A GAW20 Analysis

    Get PDF
    In the search for an understanding of how genetic variation contributes to the heritability of common human disease, the potential role of epigenetic factors, such as methylation, is being explored with increasing frequency. Although standard analyses test for associations between methylation levels at individual cytosine-phosphateguanine (CpG) sites and phenotypes of interest, some investigators have begun testing for methylation and how methylation may modulate the effects of genetic polymorphisms on phenotypes. In our analysis, we used both a genome-wide and candidate gene approach to investigate potential single-nucleotide polymorphism (SNP)–CpG interactions on changes in triglyceride levels. Although we were able to identify numerous loci of interest when using an exploratory significance threshold, we did not identify any significant interactions using a strict genomewide significance threshold. We were also able to identify numerous loci using the candidate gene approach, in which we focused on 18 genes with prior evidence of association of triglyceride levels. In particular, we identified GALNT2 loci as containing potential CpG sites that moderate the impact of genetic polymorphisms on triglyceride levels. Further work is needed to provide clear guidance on analytic strategies for testing SNP–CpG interactions, although leveraging prior biological understanding may be needed to improve statistical power in data sets with smaller sample sizes

    Relativistically rotating dust

    Get PDF
    Dust configurations play an important role in astrophysics and are the simplest models for rotating bodies. The physical properties of the general--relativistic global solution for the rigidly rotating disk of dust, which has been found recently as the solution of a boundary value problem, are discussed.Comment: 18 pages, 11 figure

    Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Get PDF
    Objective: Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. Methods: We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. Results: We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and alpha-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism

    A Genome-Wide Association Study of Red-Blood Cell Fatty Acids and Ratios Incorporating Dietary Covariates: Framingham Heart Study Offspring Cohort

    Get PDF
    Recent analyses have suggested a strong heritable component to circulating fatty acid (FA) levels; however, only a limited number of genes have been identified which associate with FA levels. In order to expand upon a previous genome wide association study done on participants in the Framingham Heart Study Offspring Cohort and FA levels, we used data from 2,400 of these individuals for whom red blood cell FA profiles, dietary information and genotypes are available, and then conducted a genome-wide evaluation of potential genetic variants associated with 22 FAs and 15 FA ratios, after adjusting for relevant dietary covariates. Our analysis found nine previously identified loci associated with FA levels (FADS, ELOVL2, PCOLCE2, LPCAT3, AGPAT4, NTAN1/PDXDC1, PKD2L1, HBS1L/MYB and RAB3GAP1/MCM6), while identifying four novel loci. The latter include an association between variants in CALN1 (Chromosome 7) and eicosapentaenoic acid (EPA), DHRS4L2(Chromosome 14) and a FA ratio measuring delta-9-desaturase activity, as well as two loci associated with less well understood proteins. Thus, the inclusion of dietary covariates had a modest impact, helping to uncover four additional loci. While genome-wide association studies continue to uncover additional genes associated with circulating FA levels, much of the heritable risk is yet to be explained, suggesting the potential role of rare genetic variation, epistasis and gene-environment interactions on FA levels as well. Further studies are needed to continue to understand the complex genetic picture of FA metabolism and synthesis
    • …
    corecore