655 research outputs found

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR

    Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions have been studied employing the RQMD model. The strength of these azimuthal asymmetries is calculated comparing the results in two different modes of RQMD (mean field and cascade). It is found that the elliptical flow which is readily observable with current experimental detectors may help to distinguish different reasonable expansion scenarios for baryon-dense matter. The final asymmetries are very sensitive to the pressure at maximum compression, because they involve a partial cancelation between early squeeze-out and subsequent flow in the reaction plane. This cancelation can be expected to occur in a broad energy region covered by the current heavy ion fixed-target programs at BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure

    Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions

    Get PDF
    Recently reported transverse momentum distributions of strange hadrons produced in Pb(158AGeV) on Pb collisions and corresponding results from the relativistic quantum molecular dynamics (RQMD) approach are examined. We argue that the experimental observations favor a scenario in which multi-strange hadrons are formed and decouple from the system rather early at large energy densities (around 1 GeV/fm3^3). The systematics of the strange and non-strange particle spectra indicate that the observed transverse flow develops mainly in the late hadronic stages of these reactions.Comment: 4 pages, 4 figure

    Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions

    Get PDF
    We present a systematic study of the kaon to pion multiplicity ratios (K+/pi+ and K-/pi-) in heavy-ion collisions from AGS to RHIC energy using the Relativistic Quantum Molecular Dynamics (RQMD) model. The model satisfactorily describes the available experimental data on K+/pi+ and K-/pi-. Within the model, we find that the strong increase of the ratios with the number of participants is mainly due to hadronic rescattering of produced mesons with ingoing baryons and their resonances. The enhancement of K/pi in heavy-ion collisions with respect to elementary p+p interactions is larger at AGS energy than SPS energy, and decreases smoothly with bombarding energy. The total multiplicity ratios at RHIC energy are predicted by RQMD to be K+/pi+ = 0.19 and K-/pi- = 0.15.Comment: 10 pages, 8 figures, RevTeX style. A section is added to discuss effects of rope formatio

    Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?

    Get PDF
    We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the earlier developed and recently refined parton-cascade/cluster-hadronization model and its Monte Carlo implementation. This space-time model involves the dynamical interplay of perturbative QCD parton production and evolution, with non-perturbative parton-cluster formation and hadron production through cluster decays. Using computer simulations, we are able to follow the entwined time-evolution of parton and hadron degrees of freedom in both position and momentum space, from the instant of nuclear overlap to the final yield of particles. We present and discuss results for the multiplicity distributions, which agree well with the measured data from the CERN SPS, including those for K mesons. The transverse momentum distributions of the produced hadrons are also found to be in good agreement with the preliminary data measured by the NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN SPS. The analysis of the time evolution of transverse energy deposited in the collision zone and the energy density suggests an existence of partonic matter for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure

    On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions

    Get PDF
    Within a hydrodynamical approach we investigate the sensitivity of single inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three different equations of state of nuclear matter. Two of the equations of state are based on lattice QCD results and include a phase transition to a quark-gluon plasma. The third equation of state has been extracted from the microscopic transport code RQMD under the assumption of complete local thermalization. All three equations of state provide reasonable fits to data taken by the NA44 and NA49 Collaborations. The initial conditions before the evolution of the fireballs and the space-time evolution pictures differ dramatically for the three equations of state when the same freeze-out temperature is used in all calculations. However, the softest of the equations of state results in transverse mass spectra that are too steep in the central rapidity region. We conclude that the transverse particle momenta are determined by the effective softness of the equation of state during the fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm

    Study of non-equilibrium effects and thermal properties of heavy ion collisions using a covariant approach

    Full text link
    Non-equilibrium effects are studied using a full Lorentz-invariant formalism. Our analysis shows that in reactions considered here, no global or local equilibrium is reached. The heavier masses are found to be equilibrated more than the lighter systems. The local temperature is extracted using hot Thomas Fermi formalism generalized for the case of two interpenetrating pieces of nuclear matter. The temperature is found to vary linearly with bombarding energy and impact parameter whereas it is nearly independent of the mass of the colliding nuclei. This indicates that the study of temperature with medium size nuclei is also reliable. The maximum temperatures obtained in our approach are in a nice agreement with earlier calculations of other approaches. A simple parametrization of maximal temperature as a function of the bombarding energy is also given.Comment: LaTex-file, 17 pages, 8 figures (available upon request), Journal of Physics G20 (1994) 181

    Antibaryons in massive heavy ion reactions: Importance of potentials

    Get PDF
    In the framework of RQMD we investigate antiproton observables in massive heavy ion collisions at AGS energies and compare to preliminary results of the E878 collaboration. We focus here on the considerable influence of the *real* part of an antinucleon--nucleus optical potential on the antiproton momentum spectra

    Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model

    Get PDF
    A hadronic cascade model based on resonances and strings is used to study mass dependence of relativistic nuclear collisions from p+Be to Au+Au at AGS energies (\sim 10\AGeV) systematically. Hadron transverse momentum and rapidity distributions obtained with both cascade calculations and Glauber type calculations are compared with experimental data to perform detailed discussion about the importance of rescattering among hadrons. We find good agreement with the experimental data without any change of model parameters with the cascade model. It is found that rescattering is of importance both for the explanation of high transverse momentum tail and for the multiplicity of produced particles.Comment: 27 pages, 30 figure
    corecore