19 research outputs found

    Electrostatic electron cyclotron instabilities near the upper hybrid layer due to electron ring distributions

    Get PDF
    A theoretical study is presented of the electrostatic electron cyclotron instability involving Bernstein modes in a magnetized plasma. The presence of a tenuous thermal ring distribution in a Maxwellian plasma decreases the frequency of the upper hybrid branch of the electron Bernstein mode until it merges with the nearest lower branch with a resulting instability. The instability occurs when the upper hybrid frequency is somewhat above the third, fourth, and higher electron cyclotron harmonics, and gives rise to a narrow spectrum of waves around the electron cyclotron harmonic nearest to the upper hybrid frequency. For a tenuous cold ring distribution together with a Maxwellian distribution an instability can take place also near the second electron cyclotron harmonic. Noise-free Vlasov simulations are used to assess the theoretical linear growth-rates and frequency spectra, and to study the nonlinear evolution of the instability. The relevance of the results to laboratory and ionospheric heating experiments is discussed

    Assessing the role of oxygen on ring current formation and evolution through numerical experiments

    Full text link
    We address the effect of ionospheric outflow and magnetospheric ion composition on the physical processes that control the development of the 5 August 2011 magnetic storm. Simulations with the Space Weather Modeling Framework are used to investigate the global dynamics and energization of ions throughout the magnetosphere during storm time, with a focus on the formation and evolution of the ring current. Simulations involving multifluid (with variable H+/O+ ratio in the inner magnetosphere) and single‐fluid (with constant H+/O+ ratio in the inner magnetosphere) MHD for the global magnetosphere with inner boundary conditions set either by specifying a constant ion density or by physics‐based calculations of the ion fluxes reveal that dynamical changes of the ion composition in the inner magnetosphere alter the total energy density of the magnetosphere, leading to variations in the magnetic field as well as particle drifts throughout the simulated domain. A low oxygen to hydrogen ratio and outflow resulting from a constant ion density boundary produced the most disturbed magnetosphere, leading to a stronger ring current but misses the timing of the storm development. Conversely, including a physics‐based solution for the ionospheric outflow to the magnetosphere system leads to a reduction in the cross‐polar cap potential (CPCP). The increased presence of oxygen in the inner magnetosphere affects the global magnetospheric structure and dynamics and brings the nightside reconnection point closer to the Earth. The combination of reduced CPCP together with the formation of the reconnection line closer to the Earth yields less adiabatic heating in the magnetotail and reduces the amount of energetic plasma that has access to the inner magnetosphere.Key PointsLow O+/H+ ratio produced stronger ring currentInclusion of physics‐based ionospheric outflow leads to a reduction in the CPCPOxygen presence is linked to a nightside reconnection point closer to the EarthPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112251/1/jgra51856.pd

    Prospects for Lunar Satellite Detection of Radio Pulses from Ultrahigh Energy Neutrinos Interacting with the Moon

    Full text link
    The Moon provides a huge effective detector volume for ultrahigh energy cosmic neutrinos, which generate coherent radio pulses in the lunar surface layer due to the Askaryan effect. In light of presently considered lunar missions, we propose radio measurements from a Moon-orbiting satellite. First systematic Monte Carlo simulations demonstrate the detectability of Askaryan pulses from neutrinos with energies above 10^{20} eV, i.e. near and above the interesting GZK limit, at the very low fluxes predicted in different scenarios.Comment: RevTeX (4 pages, 2 figures). v2 includes updated results and extended discussio

    Self‐consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere

    Get PDF
    The Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model self‐consistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.Key PointsFirst multifluid MHD simulation of Europa's plasma interaction presentedMatches plasma and magnetic field observations during Galileo E4 and E26 flybysPlasma flow and temperatures different for magnetospheric and pick up ionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111914/1/jgra51773.pd

    Ion phase space vortices in

    No full text
    The formation and propagation of isolated ion phase space vortices are observed in a 3-dimensional numerical simulation. The code allows for an externally applied constant magnetic field. The electrons are assumed to be isothermal and Boltzmann distributed at all times, implying that Poisson's equation becomes nonlinear for the present problem. Ion phase space vortices are formed by the nonlinear saturation of the ion-ion two-stream instability, excited by injecting an ion beam or short ion-bursts at the boundary. We consider the effects of finite beam diameters and the intensity of an externally imposed magnetic field

    Comet 1P/Halley multifluid MHD model for the Giotto fly-by

    No full text
    The interaction of comets with the solar wind has been the focus of many studies including numerical modeling. We compare the results of our multifluid MHD simulation of comet 1P/Halley to data obtained during the flyby of the European Space Agency's Giotto spacecraft in 1986. The model solves the full set of MHD equations for the individual fluids representing the solar wind protons, the cometary light and heavy ions, and the electrons. The mass loading, charge-exchange, dissociative ion-electron recombination, and collisional interactions between the fluids are taken into account. The computational domain spans over several million kilometers, and the close vicinity of the comet is resolved to the details of the magnetic cavity. The model is validated by comparison to the corresponding Giotto observations obtained by the Ion Mass Spectrometer, the Neutral Mass Spectrometer, the Giotto magnetometer experiment, and the Johnstone Plasma Analyzer instrument. The model shows the formation of the bow shock, the ion pile-up, and the diamagnetic cavity and is able to reproduce the observed temperature differences between the pick-up ion populations and the solar wind protons. We give an overview of the global interaction of the comet with the solar wind and then show the effects of the Lorentz force interaction between the different plasma populations
    corecore