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1. Introduction

The interest in cyclotron harmonic phenomena in magne-

tized plasma [1–9] were triggered by the observation of emis-

sions, absorption, and resonances at harmonics of the electron 

cyclotron frequency in laboratory experiments and satellite 

sounding experiments [10, 11]. Solar radio emissions [12, 13], 

and some spectral features of radiation near electron cyclo-

tron harmonics in ionospheric heating experiments [14] have 

also been attributed to electron cyclotron instabilities. Ring-

like ion distributions may also be formed due to neutral beam 

injection [15, 16], charge-exchange collisions in drifting 

plasma [17, 18], solar wind interactions with comets [19, 20], 

etc, and result in the excitation of electrostatic low-frequency 

waves. In general, maser instabilities due to loss-cone or 

ring-like electron distributions give rise to excitations in the 

Z (slow X) mode or upper hybrid mode branch for pe ceω ω≫  

[13], while radiation in the fast X mode branch near ceω  domi-

nates in the opposite limit. The latter has been studied exten-

sively in the framework of auroral kilometric radiation [21], 

solar and stellar radio bursts [22], etc, and via simulations and 

laboratory experiments [23–25]. There are also anisotropy-

driven electromagnetic and electrostatic waves for different 

sets of parameters [26]. Recent laboratory experiments [27, 

28] using a mirror conined plasma have shown a number of 

different instabilities and emissions, including oscillations 

near the second electron cyclotron harmonic attributed to the 

presence of thermal ring distributions [12]. Theoretical and 
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numerical studies have been carried out of thermal ring elec-

tron distributions [30, 31] and of a maser-beam instability of 

Bernstein waves [29]. Particle-in-cell simulations have been 

used to study Bernstein waves [32] and instabilities for com-

binations of ring and core populations [33–35]. It has been 

recognized that the inclusion of a cold core distribution lowers 

the threshold for instability compared to a pure ring distribu-

tion [33, 34, 36, 37].

The aim of this paper is to carry out a theoretical and 

numerical study of the electrostatic electron cyclotron insta-

bility and to discuss its relevance to spectral features of 

stimulated electro magnetic emissions escaping the plasma in 

laboratory [27, 28] and ionospheric heating [14] experiments. 

A parallelized Vlasov code [38, 39] in two spatial and two 

velocity dimensions (x, y, vx, vy), plus time, is used to carry out 

noise-free simulations to assess the theoretical results and to 

study the nonlinear saturation of the instabilities.

2. Theory

Electrostatic waves in a magnetized electron plasma with sta-

tionary ions are governed by the Vlasov–Poisson system

f

t
f

e

m
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e
e
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where e is the magnitude of the electron charge, me is the elec-

tron mass, B0 is the external magnetic ield, 0ε  is the vacuum 

electric permittivity, and n0 is the total equilibrium electron 

number density. Linear electron Bernstein waves are found 

by linearizing the unknown variables as f f f tv r v, ,e 0 1( ) ( )= +  

and 1φ φ=  with f f1 0| |≪ , and Fourier analyzing the Vlasov–

Poisson system of equations by assuming that f1 and 1φ  are 

proportional to tk rexp i i( )ω⋅ −  where k is the wave vector 

and ω is the frequency.

We will concentrate on electron Bernstein waves propa-

gating perpendicularly to the magnetic ield BB z0 0= ˆ so that 

x yr x y= + ��  and x yx y/ /∇ = ∇ = ∂ ∂ + ∂ ∂⊥ �� , where x�, y�, and 

ẑ are the units vectors along the x, y and z axes. Hence the 

wave vector component parallel to B0 is set to zero, kz  =  0. To 

obtain the dispersion relation for a distribution of electrons, 

we follow the formalism of [5]. The starting point is the delta-

function electron velocity ring distribution

F v v
v v v v

v
,

2
,z

z z0 0

0

( )
( ) ( )δ δ

π
=

− −
δ ⊥

⊥ ⊥

⊥

 (3)

where δ is Dirac’s delta function, vz0 is the particle velocity 

along the z-axis, parallel to the magnetic ield, and all electrons 

have the same speed v 0⊥  transversely orbiting the magnetic 

ield. We have denoted v v vx y
2 2 1 2( ) /= +⊥ . For perpendicular 

propagation (kz  =  0), the equilibrium distribution function (3) 

then yields the electron susceptibility on integral form [5]
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where ce/ω ωΩ = , n e mpe e0
2

0
1 2( / ) /

ω ε=  is the electron plasma 

frequency, eB mce e0/ω =  is the electron gyrofrequency, J0 

is the Bessel function of the irst kind of order zero, and 

k k kx y
2 2

= +⊥ . To obtain the susceptibility for a different 

velocity distribution, it now sufices to multiply equation (4) 

by a weighting function depending on the shape of the 

velocity distribution (normalized to unity) and to integrate 

over velocity space.

For a Maxwellian equilibrium distribution
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where the integration over vz0 has been carried out. By using 

the Bessel function identity [40]
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the integration over v 0⊥  can be carried out, with the result [5]
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where k vTe ce
2 2 2

/λ ω= ⊥ . The integral form of the susceptibility is 

more amenable to numerical evaluation than forms containing 

ininite sums of Bessel functions.

For a thermal ring distribution of suprathermal electrons on 

the form [4, 12, 14]
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we have the susceptibility
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where the integration over vz0 has been carried out. By using 

the identity
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which is obtained by differentiating both sides of equation (7) 

with respect to 2γ− , the integration over v 0⊥  in equation (10) 

can be carried out, with the result
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where λ ω= ⊥ /k va a ce
2 2 2 .

For a plasma consisting of a sum of a Maxwellian core 

distribution and thermal and delta-function ring distributions, 

the dispersion relation governing the linear growth-rate of the 

instability can now be written

1 1 0,th M th th( )η η χ η χ η χ+ − − + + =δ δ δ (13)

where n nth th 0/η =  and n n0/η =δ δ  is the relative number den-

sity fraction of the thermal and delta-function ring electrons, 

respectively. To obtain the complex-valued wave frequency 

i IRω ω ω= +  from the dispersion relation (13), where Rω  is 

the real frequency and Iω  the growth-rate, we carry out the 

integrals over ψ numerically by means of a sum representation 

and solve the dispersion relation iteratively.

3. Numerical setup and simulation results

We carry out a set of Vlasov simulations using combinations 

of Maxwellian and ring distributions, and compare the results 

with solutions of the linear dispersion relation. The plasma 

parameters used for the 9 simulation runs are listed in table 1, 

where it is indicated in which igures the respective numerical 

result are presented. An equilibrium distribution function con-

sistent with the dispersion relation (13) is

F v F v F v F v1 ,0 th M th th( ) ( ) ( ) ( ) ( )η η η η= − − + +δ δ δ⊥ ⊥ ⊥ ⊥ (14)

where F vM( )⊥ , F v( )δ ⊥ , and F vth( )⊥  are obtained, respectively, by 

integrating F v v, zM( )⊥  in equation (5), F v v, z( )δ ⊥  in equation (3), 

and F v v, zth( )⊥  in equation (9) over vz, as
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The numerical simulation method is based on the Vlasov 

equation  Fourier transformed in velocity space [38] where 

the solver is parallelized [39] by (i) integrating the Vlasov 

equation for different particle species in parallel on separate 

processors, and (ii) domain decomposition of each particle 

species in the Fourier transformed velocity space and con-

iguration space. The communication between processors 

is done by means of message passing interface (MPI). The 

initially Maxwellian and ring distributions are treated as dif-

ferent electron species in the simulations. Expressions for the 

initial conditions in the Fourier transformed velocity space are 

given in the appendix. As described in [38], a 4th-order com-

pact difference scheme is used to calculate derivatives in the 

Fourier transformed velocity space, a pseudo-spectral method 

is used in coniguration space with periodic boundary condi-

tions, and the standard 4th-order Runge–Kutta scheme is used 

to advance the solution in time. The code is run in electrostatic 

mode to lessen the stability constraint (Courant condition) on 

the time step.

The hot thermal ring distribution is typically one order of 

magnitude wider in velocity than the Maxwellian distribution, 

while the opposite holds in the Fourier transformed velocity 

space. To resolve both the Maxwellian and ring populations 

accurately in the Fourier transformed velocity space, we have 

used the following numerical parameters: the simulation box 

is along the x-direction is x0 600 Deλ< <  and is resolved by 

200 grid points. The Fourier transformed velocity space for the 

Maxwellian electron species has a maximum of v10 Temax
1η =
−  

in each direction in ,x y( )η η -space, and is resolved by a grid 

size of v0.25 Te
1η∆ =
− , while the thermal ring species has 

v2 Temax
1η =
− , and is resolved by a grid size of v0.05 Te

1η∆ =
− . 

(A somewhat smaller grid size of v0.038 Te
1η∆ =
−  in igure 2(c) 

for accuracy.) For the delta-function ring distribution, we use 

v1 Temax
1η =
−  and v0.025 Te

1η∆ =
− . To seed the instability, low 

amplitude (about 10−4 of the background distribution) random 

numbers are added to the grid points of the electron distribu-

tion function. We use a typical time-step of t 0.01∆ = –0.02 pe
1

ω
−  

and a total simulation time of the order ω
−10 pe

3 1. For the thermal 

ring distribution we use v v20a Te= , and for the delta-function 

ring distribution we use v v20 Te0 =⊥ . For most cases (except 

in igures 7(b) and (d)), we use a density fraction of 10% for 

the ring distributions and 90% for the Maxwellian distribution.

Figures 1–3 show the real frequencies and growth rates 

obtained by solving the dispersion relation (14) for a sum of a 

Maxwellian core distribution and a thermal ring distribution, 

as well as the frequency spectra and estimated growth-rates 

from the corresponding Vlasov simulations (see runs 1–4 in 

table 1). The spectra and growth-rates are estimated for times 

(indicated in the igure captions) before nonlinear saturation 

of any instability. Figures 1–3 use an upper hybrid frequency 

somewhat above the 4th, 3rd and 2nd electron cyclotron har-

monic, respectively, with 4.1uh ce/ω ω = , 3.1 and 2.1, where 

Table 1. Parameters used in the Vlasov simulation runs, and the 
corresponding igures where the simulation results are presented.

Run /ω ωuh ce ηth ηδ /v va Te /⊥v vTe0 Figures

1 4.1 0.1 0 20 — Figures 1, 8 and 9

2 3.1 0.1 0 20 — Figures 2 and 8

3 2.1 0.1 0 20 — Figures 3(a) and (c)

4 2.1 0.1 0 20 — Figures 3(b) and (d)

5 4.1 0 0.1 — 20 Figures 4, 8 and 10

6 3.1 0 0.1 — 20 Figures 5 and 8

7 2.1 0 0.1 — 20 Figure 6

8 2.0 0 0.1 — 20 Figures 7(a) and (c)

9 2.0 0 1 — 20 Figures 7(b) and (d)

Plasma Phys. Control. Fusion 58 (2016) 095002
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uh pe ce
2 2

ω ω ω= +  is the upper hybrid frequency. As seen in 

igures 1(a), (b) and 2(a), (b) for 4.1uh ce/ω ω =  and 3.1, respec-

tively, an instability takes place for wavenumbers where the 

upper hybrid branch of the electron Bernstein modes merges 

with the nearest lower electron Bernstein branch, while it is 

seen in igure 3 that no instability takes place for the cases 

2.1uh ce/ω ω =  and 2.0. The numerical simulation results con-

irm that the energy spectra in k,R( )ω  space are concentrated 

to the linear Bernstein modes, and that the growth-rate of the 

instability is consistent with linear theory. The growth-rate 

is estimated in the simulations by assuming that the ampl-

itude of each wavenumber component of the electric ield 

is growing as texp I( )ω  for the growth-rate Iω , and hence its 

logarithm grows linearly with time as A tIω+  where A is a 

constant; a linear regression scheme4 is used to estimate Iω  

for each wavenumber to produce the plots in igures 1(d) and 

2(d). Compared to the purely Maxwellian case (indicated with 

dashed lines in igures 1(a) and 2(a)), the upper hybrid branch 

the decreases its frequency until it touches the nearest lower 

electron Bernstein branch. An important result is here that 

while the upper hybrid frequency has been chosen slightly 

above an electron cyclotron harmonic harmonic, the fre-

quency of the unstable waves is close to the harmonic of the 

electron cyclotron frequency, which is signiicantly below the 

upper hybrid frequency.

Theoretical and simulation results using the delta-func-

tion ring distribution in the initial conditions (see runs 5–9 in 

table 1) are shown in igures 4–7. The ring distribution leads 

to a very rapid growth of the waves, with a growth-rate about 

one order of magnitude larger than for the corresponding case 

using a thermal ring distribution (see igures 4(d) and 5(d)). 

The large growth-rate leads to an increase of the amplitude a 

factor two in each wave period, leading to a somewhat blurred 

picture of the frequency spectra in igures  4(c) and 5(c). 

Figure 1. (a) The real frequency and (b) the growth-rate of the electron cyclotron instability obtained from equation (13) for a thermal 
ring distribution with =v v20a Te, ω ω= 4.1uh ce, η = 0.1th , and η =δ 0 (solid lines). The electron Bernstein modes for a purely Maxwellian 
distribution (η η= =δ 0th ) are indicated with dashed lines. (c) The frequency-wavenumber spectrum of the electric ield in logarithmic 

scale, | |ωEln k, , using arbitrary units, and (d) the estimated growth-rate obtained in a Vlasov simulation (run 1 in table 1) using the initial 
condition (14) with the same parameters as in panels (a) and (b) over t  =  0– ω100 ce .

Figure 2. The same as igure 1 for ω ω= 3.1uh ce (run 2 in table 1), showing (a) the theoretical frequency and (b) growth-rate, and (c) the 
simulated frequency-wavenumber spectrum and (d) the estimated growth-rate over t  =  0– ω136 ce.

4 We used the ‘scipy.stats.linregress’ to do the linear regression in Python; 

see also [41].

Plasma Phys. Control. Fusion 58 (2016) 095002
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Figure 3. The same as igure 1 for ω ω= 2.1uh ce over t  =  0– ω342 ce (top, run 3 in table 1) and ω ω= 2.0uh ce over t  =  0– ω346 ce (bottom, run 4). 
No instabilities take place, and growth-rates are therefore not shown.

Figure 4. (a) The real frequency and (b) the growth-rate of the electron cyclotron instability obtained from equation (13) for a delta-
function ring distribution with =⊥v v20 Te0 , ω ω= 4.1uh ce, η =δ 0.1, and η = 0th  (solid lines), and electron Bernstein modes for a purely 
Maxwellian distribution, η η= =δ 0th  (dashed lines). (c) The frequency-wavenumber spectrum of the electric ield in logarithmic scale, 

| |ωEln k, , using arbitrary units, and (d) the estimated growth-rate obtained in a Vlasov simulation (run 5 in table 1) using the initial condition 
(14) over t  =  0– ω25 ce with the same parameters as in panels (a) and (b).

Figure 5. The same as igure 4 for ω ω= 3.1uh ce (run 6 in table 1), showing (a) the theoretical frequency and (b) growth-rate, and (c) the 
simulated frequency-wavenumber spectrum and (d) the estimated growth-rate over t  =  0– ω25 ce.

Plasma Phys. Control. Fusion 58 (2016) 095002
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Figure 6. The same as igure 4 for ω ω= 2.1uh ce (run 7 in table 1), showing (a) the theoretical frequency and (b) growth-rate, and (c) the 
simulated frequency-wavenumber spectrum and (d) the estimated growth-rate over t  =  0– ω163 ce.

Figure 7. The same as igure 4 for ω ω= 2.0uh ce over t  =  0– ω231 ce (top, run 8 in table 1). Bottom panels show a case with a pure ring 
distribution η =δ 1 and η = 0th  over t  =  0– ω58 ce (run 9). No instabilities take place, and therefore growth-rates are not shown.

Figure 8. The amplitude of the wave electric ield for (a) /ω ω = 3.1uh ce , η = 0.1th  and η =δ 0 (run 2 in table 1), (b) /ω ω = 4.1uh ce , η = 0.1th  
and η =δ 0 (run 1), (c) /ω ω = 3.1uh ce , η =δ 0.1 and η = 0th  (run 6), and (d) /ω ω = 4.1uh ce , η =δ 0.1 and η = 0th  (run 5). The electric ield is 
normalized by / λk T eeB De.

Plasma Phys. Control. Fusion 58 (2016) 095002
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Figure 4 (for 4.1uh ce/ω ω = ) shows unstable wave modes for 

three groups of wavenumbers with frequencies near the 4th 

electron cyclotron harmonic, and in addition an instability 

where the 2nd electron Bernstein branch merges with the 3rd 

branch. Also for 3.1uh ce/ω ω =  in igure 5 there are two groups 

of unstable waves near the 3rd cyclotron harmonic. Figure 6 

shows that in contrast to the case of a thermal ring distribution 

there is also an instability for 2.1uh ce/ω ω =  using the delta-

function ring distribution where the the 1st and 2nd electron 

Bernstein branches merge. When the upper hybrid frequency is 

decreased to 2.0uh ce/ω ω =  (see igure 7(a)), the two modes no 

longer merge, and the instability disappears. The case of a pure 

ring distribution ( 1η =δ , 0thη = ) in igure 7(b) is also stable 

with respect to the perpendicular electron cyclotron instability.

We have here mostly concentrated on cases where the 

thermal ring distribution is a relatively small fraction of the 

total electron distribution. The opposite case, when the ring 

distribution has a larger density [33] or when the core distri-

butions is absent [5], leads in general to instabilities between 

electron cyclotron harmonics (half-harmonic radiation) at 

points in the spectrum where the electron Bernstein branches 

merge, with maximum growth-rates for waves propagating 

at oblique angles to the magnetic ield. It is interesting that 

the inclusion of a cold core distribution lowers the threshold 

for instability compared to a pure ring distribution [33, 34, 

36, 37]. As an example, the pure delta-function ring distri-

bution becomes unstable only for 6.62 2.57pe ce ce≳ω ω ω≈  

[5], while we see in igure 6 that the combination of a ten-

uous delta-function ring distribution and a Maxwellian core 

distribution is unstable for 2.1uh ceω ω= . On the other hand, 

when the delta-function ring distribution is replaced by the 

thermal ring distribution, in igure 7(a), the system is again 

stabilized for 2.1uh ceω ω= . This is consistent with the study 

of electron cyclotron harmonic instabilities [42] where a large 

Figure 9. The evolution of the velocity distribution for the initially thermal ring distributed electrons /F vTeth
2  (left) and Maxwellian 

distributed electrons /F vTeM
2  (right), for ω ω= 4.1uh ce, η = 0.1th  and η =δ 0 (run 1 in table 1), at t  =  0 (top row), ω=

−t 200 ce
1 (middle row)  

and ω=
−t 400 ce

1 (bottom row).
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enough cold component stabilizes the low electron cyclotron 

harmonic bands. We have not been able to ind an instability 

near the second electron cyclotron harmonic using the thermal 

ring distribution. Recent laboratory experiments [27, 28], on 

the other hand, have observed particularly strong bursts of 

electromagnetic emissions when the upper hybrid frequency 

is in the vicinity of the second electron cyclotron harmonic. It 

could indicate the presence of a cold electron population and 

a relatively cold ring distribution. It seems from igures 1 and 

2 that the electron cyclotron instability is easier to excite when 

the upper hybrid frequency is somewhat above the third and 

higher electron cyclotron harmonics where the threshold for 

instability is lower.

Figure 8 shows the exponential growth in time and non-

linear saturation of the wave electric ield for different com-

binations of thermal and delta-function ring distributions with 

Maxwellian distributions corresponding to the parameters 

in igures 1, 2, 4 and 5. For the thermal ring distribution in 

igures 8(a) and (b), the electric wave ield reaches a satur-

ation level that stays throughout the simulation, while for the 

thermal ring-distribution in igures 8(c) and (d), the rapidly 

growing electric ield peaks at saturation after which the elec-

tric ield amplitude is weakly decreasing with time. There is no 

signiicant difference in electric ield amplitudes comparing 

3.1uh ce/ω ω =  (top panels) and 4.1uh ce/ω ω =  (bottom panels). 

As noted in previous studies, the nonlinear saturation of the 

instability leads to a loss of energy of the ring distributions 

and an energy gain (heating) of the core distribution [33]. This 

is consistent with the volume-rendered5 phase-space plots 

in igures  9 and 10 for the thermal ring and delta-function 

ring distributions, respectively, for the case 4.1uh ce/ω ω = . 

The instability gives rise to large amplitude waves, in part-

icular visible in the initially cold Maxwellian distribution 

Figure 10. The evolution of the velocity distribution for the initially delta-function ring distributed electrons /δF vTe
2  (left) and Maxwellian 

distributed electrons /F vTeM
2  (right), for ω ω= 4.1uh ce, η =δ 0.1 and η = 0th  (run 5 in table 1), at t  =  0 (top row), ω=

−t 40 ce
1 (middle row) and 

ω=
−t 200 ce

1 (bottom row).

5 The volume rendered plots in igures 8 and 9 were done with the Matlab 

application vol3d, written by Joe Conti. See [44].
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of electrons (right-hand columns of igures  9 and 10). The 

large amplitude waves modify the distribution functions via 

wave-particle interactions. Most notable are the changes in 

the tenuous ring distributions, seen in the right-hand panels 

of igures 9 and 10, since these are the minority species in our 

simulations: in general, the instability leads to that a portion 

of the ring-distributed electrons move towards lower speeds to 

ill in the minimum in the total distribution function. The wave 

turbulence also accelerates a small portion of the initially cold 

Maxwellian distribution, as is visible in the right-hand col-

umns in igures 9 and 10. Once marginal stability has been 

obtained, the wave amplitude stops growing in time and either 

maintains the saturation level or slowly decreases. The satur-

ation process may involve resonance broadening of the cold 

component [43] as well as nonlinear Landau damping [45] 

and quasilinear diffusion of the hot component.

4. Discussion

In conclusion, we have carried out a theoretical study 

of the electron cyclotron instability due to the sum of a 

Maxwellian core distribution and a thermal ring or delta-

function ring electron distribution. The theoretical results 

are supported by Vlasov simulations. For a tenuous thermal 

ring distribution, the main result is that the electrostatic 

instability perpendicular to the magnetic ield occurs 

when the upper hybrid frequency is slightly above one of 

the electron cyclotron harmonics, starting with the third 

electron cyclotron harmonic. For a sum of a Maxwellian 

distribution and a tenuous delta-function ring distribu-

tion, an instability occurs also near the second harmonic 

of the electron cyclotron frequency. Hence, the recent 

experimental observations [27, 28] of emissions near the 

double resonance where the upper hybrid frequency is in 

the vicinity of the second electron cyclotron harmonic, 

could indicate the presence of a cold electron component 

and a cold ring distribution of electrons. It has also been 

suggested that the broad upshifted maximum feature of 

the stimulated electromagnetic emissions (SEE) in iono-

spheric heating experiments could be explained by an elec-

tron cyclotron instability when the upper hybrid frequency 

is slightly above one of the electron cyclotron harmonics 

[14], and where a small portion of the electrostatic wave 

energy is mode converted to ordinary mode waves escaping 

the plasma as SEE. However, since the instability takes 

place by the merging of the upper hybrid branch of the 

electron Bernstein wave and the next lower branch, giving 

rise to oscillations at or below the electron cyclotron har-

monic, this would require a separate mechanism to increase 

the frequency of these oscillations to form the broad 

upshifted maximum. Experimental observations [46–48] 

show that the peak frequency BUMω  approximately obeys 

nBUM ce0 0ω ω ω ω− = −  when the transmitted frequency 0ω  

is above one of the electron cyclotron harmonics, n ce0ω ω> . 

An alternative model for the broad upshifted maximum is 

a 4-wave parametric decay scenario [49, 50] involving the 

transmitted pump wave, the upper hybrid and nearest lower 

electron Bernstein branch, and the lower hybrid waves, 

which seems to account for the observed frequency upshift.

Acknowledgments

Discussions with Thomas Leyser at the Swedish Institute of 

Space Physics are gratefully acknowledged. This work was 

supported by the Engineering and Physical Sciences Research 

Council (EPSRC), U.K., Grant no. EP/M009386/1. Simulation 

data supporting the igures  are available at http://dx.doi.

org/10.15129/56448d9e-adb0-4d2b-afdb-029165a40f54.

Appendix. Initial conditions in Fourier  

transformed velocity space

The initial conditions for the Fourier transformed electron dis-

tribution functions to be used in the numerical code [39] are 

obtained by using the Fourier transform pair

F v v F v v, , exp i i d dx y x y x x y y x y( ) ( ) ( )∫ ∫ η η η η η η= − −� (A.1a)

F F v v v v v v,
1

2
, exp i i d d ,x y x y x x y y x y2

( )
( )

( ) ( )∫ ∫η η
π

η η= +�

 (A.1b)

which applied to equations (15a)–(15c) give the Fourier trans-

formed Maxwellian, thermal ring, and delta-function ring dis-

tribution function, respectively, as
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� (A.2c)

where 
x y
2 2η η η= +⊥ . The electron density for each elec-

tron species is obtained by evaluating the respective Fourier 

transformed distribution function at the origin of η-space as 

n F2M
2

M 0( )π= |
η =⊥

� , n F2th
2

th 0( )π= |
η =⊥

�  and n F2 2
0( )π= |δ δ η =⊥

� .
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