1,820 research outputs found

    Single-electron latch with granular film charge leakage suppressor

    Full text link
    A single-electron latch is a device that can be used as a building block for Quantum-dot Cellular Automata (QCA) circuits. It consists of three nanoscale metal "dots" connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ("latch") information represented by the location of a single electron within the three dots. To obtain latching, the undesired leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However, this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.Comment: 21 pages, 4 figure

    Negative high-frequency differential conductivity in semiconductor superlattices

    Full text link
    We examine the high-frequency differential conductivity response properties of semiconductor superlattices having various miniband dispersion laws. Our analysis shows that the anharmonicity of Bloch oscillations (beyond tight-binding approximation) leads to the occurrence of negative high-frequency differential conductivity at frequency multiples of the Bloch frequency. This effect can arise even in regions of positive static differential conductivity. The influence of strong electron scattering by optic phonons is analyzed. We propose an optimal superlattice miniband dispersion law to achieve high-frequency field amplification

    Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions

    Full text link
    A new representation of the 2N fold integrals appearing in various two-matrix models that admit reductions to integrals over their eigenvalues is given in terms of vacuum state expectation values of operator products formed from two-component free fermions. This is used to derive the perturbation series for these integrals under deformations induced by exponential weight factors in the measure, expressed as double and quadruple Schur function expansions, generalizing results obtained earlier for certain two-matrix models. Links with the coupled two-component KP hierarchy and the two-component Toda lattice hierarchy are also derived.Comment: Submitted to: "Random Matrices, Random Processes and Integrable Systems", Special Issue of J. Phys. A, based on the Centre de recherches mathematiques short program, Montreal, June 20-July 8, 200

    Bound, virtual and resonance SS-matrix poles from the Schr\"odinger equation

    Get PDF
    A general method, which we call the potential SS-matrix pole method, is developed for obtaining the SS-matrix pole parameters for bound, virtual and resonant states based on numerical solutions of the Schr\"odinger equation. This method is well-known for bound states. In this work we generalize it for resonant and virtual states, although the corresponding solutions increase exponentially when rr\to\infty. Concrete calculations are performed for the 1+1^+ ground and the 0+0^+ first excited states of 14N^{14}\rm{N}, the resonance 15F^{15}\rm{F} states (1/2+1/2^+, 5/2+5/2^+), low-lying states of 11Be^{11}\rm{Be} and 11N^{11}\rm{N}, and the subthreshold resonances in the proton-proton system. We also demonstrate that in the case the broad resonances their energy and width can be found from the fitting of the experimental phase shifts using the analytical expression for the elastic scattering SS-matrix. We compare the SS-matrix pole and the RR-matrix for broad s1/2s_{1/2} resonance in 15F{}^{15}{\rm F}Comment: 14 pages, 5 figures (figures 3 and 4 consist of two figures each) and 4 table

    Features of electronic transport in relaxed Si/Si1-X GeX heterostructures with high doping level

    Get PDF
    The low-temperature electrical and magnetotransport characteristics of partially relaxed Si/Si1-x Gex heterostructures with two-dimensional electron channel (ne≥1012 cm-2) in an elastically strained silicon layer of nanometer thickness have been studied. The detailed calculation of the potential and of the electrons distribution in layers of the structure was carried out to understand the observed phenomena. The dependence of the tunneling transparency of the barrier separating the 2D and 3D transport channels in the structure, was studied as a function of the doping level, the degree of blurring boundaries, layer thickness, degree of relaxation of elastic stresses in the layers of the structure. Tunnel characteristics of the barrier between the layers were manifested by the appearance of a tunneling component in the current-voltage characteristics of real structures. Instabilities, manifested during the magnetotransport measurements using both weak and strong magnetic fields are explained by the transitions of charge carriers from the two-dimensional into three-dimensional state, due to interlayer tunneling transitions of electrons. © 2013 Elsevier B.V. All rights reserved

    Fermionic construction of partition function for multi-matrix models and multi-component TL hierarchy

    Full text link
    We use pp-component fermions (p=2,3,...)(p=2,3,...) to present (2p2)N(2p-2)N-fold integrals as a fermionic expectation value. This yields fermionic representation for various (2p2)(2p-2)-matrix models. Links with the pp-component KP hierarchy and also with the pp-component TL hierarchy are discussed. We show that the set of all (but two) flows of pp-component TL changes standard matrix models to new ones.Comment: 16 pages, submitted to a special issue of Theoretical and Mathematical Physic

    Electron Bloch Oscillations and Electromagnetic Transparency of Semiconductor Superlattices in Multi-Frequency Electric Fields

    Full text link
    We examine phenomenon of electromagnetic transparency in semiconductor superlattices (having various miniband dispersion laws) in the presence of multi-frequency periodic and non-periodic electric fields. Effects of induced transparency and spontaneous generation of static fields are discussed. We paid a special attention on a self-induced electromagnetic transparency and its correlation to dynamic electron localization. Processes and mechanisms of the transparency formation, collapse, and stabilization in the presence of external fields are studied. In particular, we present the numerical results of the time evolution of the superlattice current in an external biharmonic field showing main channels of transparency collapse and its partial stabilization in the case of low electron density superlattices

    Fermionic approach to the evaluation of integrals of rational symmetric functions

    Full text link
    We use the fermionic construction of two-matrix model partition functions to evaluate integrals over rational symmetric functions. This approach is complementary to the one used in the paper ``Integrals of Rational Symmetric Functions, Two-Matrix Models and Biorthogonal Polynomials'' \cite{paper2}, where these integrals were evaluated by a direct method.Comment: 34 page

    Representations for Three-Body T-Matrix on Unphysical Sheets: Proofs

    Get PDF
    A proof is given for the explicit representations which have been formulated in the author's previous work (nucl-th/9505028) for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. Also, the analogous representations for analytical continuation of the three-body scattering matrices and resolvent are proved. An algorithm to search for the three-body resonances on the base of the Faddeev differential equations is discussed.Comment: 98 Kb; LaTeX; Journal-ref was added (the title changed in the journal

    Representations for Three-Body T-Matrix on Unphysical Sheets

    Get PDF
    Explicit representations are formulated for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. According to the representations, the T-matrix on unphysical sheets is obviously expressed in terms of its components taken on the physical sheet only. The representations for T-matrix are used then to construct similar representations for analytical continuation of three-body scattering matrices and resolvent. Domains on unphysical sheets are described where the representations obtained can be applied.Comment: 123 Kb; LaTeX; Journal-ref was added (the title changed in the journal
    corecore