4,033 research outputs found

    Orbital Ordering in ferromagnetic Lu2V2O7

    Full text link
    We have observed the orbital ordering in the ferromagnetic Mott-insulator Lu2V2O7 by the polarized neutron diffraction technique. The orbital ordering pattern determined from the observed magnetic form factors can be explained in terms of a linear combination of wave functions |yz>, |zx> and |xy>; |0> = (1/3)^(1/2) |xy> + (1/3)^(1/2)|yz> + (1/3)^(1/2) |zx> which is proportional to |(x + y + z)^2 - r^2>; where each orbital is extended toward the center-of-mass of the V tetrahedron. We discuss the stability of the ferromagnetic Lu2V2O7, using a Hubbard Hamiltonian with these three orbitals.Comment: 17pages. to be published in J. Phys. Soc. Jpn. 74 (2005

    Thermodynamical Study on the Heavy-Fermion Superconductor PrOs4Sb12: Evidence for Field-Induced Phase Transition

    Full text link
    We report measurements of low-temperature specific heat on the 4f^2-based heavy-fermion superconductor PrOs4Sb12. In magnetic fields above 4.5 T in the normal state, distinct anomalies are found which demonstrate the existence of a field-induced ordered phase (FIOP). The Pr nuclear specific heat indicates an enhancement of the 4f magnetic moment in the FIOP. Utilizing a Maxwell relation, we conclude that anomalous entropy, which is expected for a single-site quadrupole Kondo model, is not concealed below 0.16 K in zero field. We also discuss two possible interpretations of the Schottky-like anomaly at ~3 K, i.e., a crystalline-field excitation or a hybridization gap formation.Comment: 5 pages with 5 figures, a note with two references added in proo

    Hom-quantum groups I: quasi-triangular Hom-bialgebras

    Full text link
    We introduce a Hom-type generalization of quantum groups, called quasi-triangular Hom-bialgebras. They are non-associative and non-coassociative analogues of Drinfel'd's quasi-triangular bialgebras, in which the non-(co)associativity is controlled by a twisting map. A family of quasi-triangular Hom-bialgebras can be constructed from any quasi-triangular bialgebra, such as Drinfel'd's quantum enveloping algebras. Each quasi-triangular Hom-bialgebra comes with a solution of the quantum Hom-Yang-Baxter equation, which is a non-associative version of the quantum Yang-Baxter equation. Solutions of the Hom-Yang-Baxter equation can be obtained from modules of suitable quasi-triangular Hom-bialgebras.Comment: 21 page

    Functional representations of integrable hierarchies

    Full text link
    We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which `functional representations' of particular hierarchies (like KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as `noncommutative' analogs of `Fay identities' for the KP hierarchy.Comment: 21 pages, version 2: equations (3.28) and (4.11) adde

    Photoproduction of Lambda(1405) and Sigma^{0}(1385) on the proton at E_\gamma = 1.5-2.4 GeV

    Full text link
    Differential cross sections for γpK+Λ(1405)\gamma p \to K^+\Lambda(1405) and γpK+Σ0(1385)\gamma p \to K^+\Sigma^0(1385) reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and the angular range of 0.8<cos(Θ)<1.00.8<\cos(\Theta)<1.0 for the K+K^+ scattering angle in the center-of-mass system. This data is the first measurement of the Λ(1405)\Lambda(1405) photoproduction cross section. The lineshapes of \LamS measured in Σ+π\Sigma^+\pi^- and Σπ+\Sigma^-\pi^+ decay modes were different with each other, indicating a strong interference of the isospin 0 and 1 terms of the Σπ\Sigma\pi scattering amplitudes. The ratios of \LamS production to \SigS production were measured in two photon energy ranges: near the production threshold (1.5<Eγ<2.01.5<E_\gamma<2.0 GeV) and far from it (2.0<Eγ<2.42.0 <E_\gamma<2.4 GeV). The observed ratio decreased in the higher photon energy region, which may suggest different production mechanisms and internal structures for these hyperon resonances

    Band structures of periodic carbon nanotube junctions and their symmetries analyzed by the effective mass approximation

    Full text link
    The band structures of the periodic nanotube junctions are investigated by the effective mass theory and the tight binding model. The periodic junctions are constructed by introducing pairs of a pentagonal defect and a heptagonal defect periodically in the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes with almost same radii, the ratio of which is between 0.7 and 1 . The discussed energy region is near the undoped Fermi level where the channel number is kept to two, so there are two bands. The energy bands are expressed with closed analytical forms by the effective mass theory with some assumptions, and they coincide well with the numerical results by the tight binding model. Differences between the two methods are also discussed. Origin of correspondence between the band structures and the phason pattern discussed in Phys. Rev. B {\bf 53}, 2114, is clarified. The width of the gap and the band are in inverse proportion to the length of the unit cell, which is the sum of the lengths measured along the tube axis in each tube part and along 'radial' direction in the junction part. The degeneracy and repulsion between the two bands are determined only from symmetries.Comment: RevTeX, gif fil

    Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration

    Get PDF
    The technique of guided tissue regeneration (GTR) has evolved over recent years in an attempt to achieve periodontal tissue regeneration by the use of a barrier membrane. However, there are significant limitations in the currently available membranes and overall outcomes may be limited. A degradable composite material was investigated as a potential GTR membrane material. Polylactic acid (PLA) and nanohydroxyapatite (nHA) composite was analysed, its bioactive potential and suitability as a carrier system for growth factors were assessed. The effect of nHA concentrations and the addition of platelet derived growth factor (PDGF) on osteoblast proliferation and differentiation was investigated. The bioactivity was dependent on the nHA concentration in the films, with more apatite deposited on films containing higher nHA content. Osteoblasts proliferated well on samples containing low nHA content and differentiated on films with higher nHA content. The composite films were able to deliver PDGF and cell proliferation increased on samples that were pre absorbed with the growth factor. nHA–PLA composite films are able to deliver active PDGF. In addition the bioactivity and cell differentiation was higher on films containing more nHA. The use of a nHA–PLA composite material containing a high concentration of nHA may be a useful material for GTR membrane as it will not only act as a barrier, but may also be able to enhance bone regeneration by delivery of biologically active molecules
    corecore