26,860 research outputs found
On the characteristics of emulsion chamber family events produced in low heights
The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height
Continuous-variable multipartite unlockable bound entangled Gaussian states
Continuous-variable (CV) multipartite unlockable bound-entangled states is
investigated in this paper. Comparing with the qubit multipartite unlockable
bound-entangled states, CV multipartite unlockable bound-entangled states
present the new and different properties. CV multipartite unlockable
bound-entangled states may serve as a useful quantum resource for new
multiparty communication schemes. The experimental protocol for generating CV
unlockable bound-entangled states is proposed with a setup that is at present
accessible.Comment: 6 pages, 4 figure
Abundance of moderate-redshift clusters in the Cold + Hot dark matter model
Using a set of \pppm simulation which accurately treats the density
evolution of two components of dark matter, we study the evolution of clusters
in the Cold + Hot dark matter (CHDM) model. The mass function, the velocity
dispersion function and the temperature function of clusters are calculated for
four different epochs of . We also use the simulation data to test
the Press-Schechter expression of the halo abundance as a function of the
velocity dispersion . The model predictions are in good agreement
with the observational data of local cluster abundances (). We also
tentatively compare the model with the Gunn and his collaborators' observation
of rich clusters at and with the x-ray luminous clusters at
of the {\it Einstein} Extended Medium Sensitivity Survey. The
important feature of the model is the rapid formation of clusters in the near
past: the abundances of clusters of \sigma_v\ge 700\kms and of \sigma_v\ge
1200 \kms at are only 1/4 and 1/10 respectively of the present values
(). Ongoing ROSAT and AXAF surveys of distant clusters will provide
sensitive tests to the model. The abundance of clusters at would
also be a good discriminator between the CHDM model and a low-density flat CDM
model both of which show very similar clustering properties at .Comment: 21 pages + 6 figures (uuencoded version of the PS files), Steward
Preprints No. 118
Unravelling Strings at the LHC
We construct LHC signature footprints for four semi-realistic string/
theory vacua with an MSSM visible sector. We find that they all give rise to
limited regions in LHC signature space, and are qualitatively different from
each other for understandable reasons. We also propose a technique in which
correlations of LHC signatures can be effectively used to distinguish among
these string theory vacua. We expect the technique to be useful for more
general string vacua. We argue that further systematic analysis with this
approach will allow LHC data to disfavor or exclude major ``corners'' of
string/ theory and favor others. The technique can be used with limited
integrated luminosity and improved.Comment: 34 pages, 16 figure
Graphical description of local Gaussian operations for continuous-variable weighted graph states
The form of a local Clifford (LC, also called local Gaussian (LG)) operation
for the continuous-variable (CV) weighted graph states is presented in this
paper, which is the counterpart of the LC operation of local complementation
for qubit graph states. The novel property of the CV weighted graph states is
shown, which can be expressed by the stabilizer formalism. It is distinctively
different from the qubit weighted graph states, which can not be expressed by
the stabilizer formalism. The corresponding graph rule, stated in purely graph
theoretical terms, is described, which completely characterizes the evolution
of CV weighted graph states under this LC operation. This LC operation may be
applied repeatedly on a CV weighted graph state, which can generate the
infinite LC equivalent graph states of this graph state. This work is an
important step to characterize the LC equivalence class of CV weighted graph
states.Comment: 5 pages, 6 figure
- …